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Introduction 

 

 Differential calculus plays a very important role in economics in particu-

lar in problems concerning the optimum, management and plans. Therefore 

the deep knowledge of this section of higher and applied mathematics is ne-

cessary for modern economists.  

 In the guidelines, only the most principal topics of differential calculus 

are stated in brief.  

The present guidelines are the continuation of the part where notions of 

limits and continuity of functions had been regarded. By means of these no-

tions we can introduce the notions of the derivative and the differential of the 

function which are some of the most fundamental in mathematics.  

 

Guidelines for Differential Calculus  

of the Function of Several Variables 

 

1. General Information. The Domain of the Definition, the Limit 

and the Continuity of the Function of Several Variables 

 

First of all it should be stressed that in order to better understand the 

notions connected with functions of several or many variables it is necessary 

to have deep knowledge of the principles of the function of one variable. 

The definition of the function of several variables was given in the text-

book "Introduction to Analysis", therefore we don't find it necessary to repeat it.  

We begin with the domain of the definition and the range of such  

a function. 

Definition 1. The set A of points n321 ...,,,, xxxxх  for which the 

function n321 ...,,,, xxxxf  is defined is called the domain of the definition 

of the function n321 ...,,,, xxxxfy , while the set B  of values y  is 

termed the range of the function y . The domain of the definition and the 

range is denoted as fD  and fE  respectively.  

Now let us pay our attention to the function of two variables yxfz ,  

because it has a simple geometrical meaning and it is the basis for studying 

the functions of three and more variables. 
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2. Geometric interpretation of the function of two variables 

 

Geometrically the equation yxfz ,  defines some surface. A pair of 

values of x  and y  defines a point yxP ,  in the plane xOy , (in Cartesian 

coordinates), and yxfz , , the z -coordinate of the corresponding point 

zyxM ,,  on the surface. Therefore, we say that z  is the function of the 

point yxP ,  and we write Pfz .  

It should be noted that the function yxfz ,  can also be written in 

the form 0,, zyxF  and it usually specifies each of the variables zyx ,,  

involved as an implicit function of the other two variables. 

It should also be noted there is no geometric interpretation for the func-

tion of three and more variables.  

The domain of the definition of the function yxfz ,  is usually a part 

of the xOy -plane bounded by one or several lines. Let us consider the follow-

ing examples. 

Example 1. Indicate the domain of the definition of the function 

 

222ln ryxz . 

 

Solution. This function exists when 0222 ryx . Therefore, the 

domain of the definition is the set of points, whose coordinates satisfy the 

condition 
222 ryx  that is the exterior of the circle (Fig. 1). 

Example 2. Consider the domain of the definition of the function 

 

222

1

yxr
z . 

 

Solution. This function exists when 0222 yxr . Therefore, the 

domain of the definition is the set of points, whose coordinates satisfy the 

condition 
222 ryx  that is the interior of the circle (Fig. 2). 
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Fig. 1. The domain of the definition     Fig. 2. The domain of the definition 

(the exterior of the circle)                    (the interior of the circle) 

 

The notion of the limit of the function of two variables is formulated in 

the following way. 

Definition 2. The number A is called the limit of the function 

yxfz ,  as 00, yyхx if for all the values of x  and y  which are, re-

spectively, sufficiently close to the numbers 0x  and 0y  the corresponding 

values of the function yxfz ,  are arbitrarily close to the number A. It is 

denoted as 
 

Ayxf

yy
хx

,lim

0

0

. 

 

This definition can be restated in terms of inequalities: given an arbi-

trary 0 , there exists a number 0 so that for all the points yxP ,  

whose coordinates satisfy the inequality 

 

22
0

2
00 yyxx      or     

2
0

2
00 yyxx , 

 

or 
220 yх  (that is for all the points 000 ,, yxPyxP  be-

longing  to the -neighborhood of the point 0P ) the inequality Ayxf ,  

0  
 

0  
 

x  x
 

y

 
 

y

 
 

r
 
 

r
r 
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is fulfilled, the number A is the limit of the function yxf ,  as 0хx , 

0yy . 

The notion of the limit is closely connected with the notion of continuity. 

Definition 3. The function yxfz ,  is said to be continuous at the 

point 00, yx  if  

 

0,,lim 00

0

0

yхfyxf

yy
хx

 or 00,,lim

0

0

yхfyxf

yy
хx

 

 

or its limit at the point coincides with a particular value of the function at this 

point, the converse is also true. 

 

3. Total and Partial Increments. Partial Derivatives.  

A Sufficient Condition for Differentiability 

 

The notions of the limit and the continuity make it possible to approach 

the notion of differentiability of the function of several variables. For this pur-

pose let us define the total increment of the function of two variables. In the 

general case the increment of the function is given by the formula 

 

yxfyyхxfz ,, , 

 

where x  and y  are the increments of the variables x  and y . And 

the function yxfz ,  is continuous at the point 00, yx  if  

 

0,,limlim 0000

0
0

0
0

yxfyyxxfz

y
x

y
x

. 

 

It should be noted that this formula can serve as another definition of the con-

tinuity of the function at the given point. 

The partial increments are denoted by the symbols 

 

yxfyxxfzx ,,      and     yxfyyxfzy ,, , 
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which are the increments of the function with respect to the corresponding 

variables x  and y .  

Now we can pass to the notion of partial derivatives. 

Let yxfz ,  be a function of two independent variables x  and y . 

We begin with fixing a constant value of the argument y  and investigating the 

function of one variable x . Suppose that the function possesses the deriva-

tive with respect to x , this derivative is equal to   

 

x
x

f
x

yxfyxxf ,,
lim

0
. 

 

We will denote this limit as xf  where the subscript indicates the variable 

x  with respect to which the derivative is taken for a fixed value of y . 

Definition 4. The partial derivative of the function yxfz ,  with re-

spect to x  is the function of the two variables x  and y  appearing when 

yxf ,  is differentiated with respect to x  on condition that y  is regarded as 

a constant. 

The symbols 
x

z
, xz , 

x

yxf ,
, yxf

x
,  are also used for the nota-

tion of the partial derivative. 

The partial derivative of the function yxfz ,  with respect to y  is 

defined completely analogically 

 

y
y

f
y

yxfyyxf ,,
lim

0
 

 

and it is also denoted 
y

z
, yz , 

y

yxf ,
, yxf

y
, . 

At last the partial derivatives for the function of three and more varia-

bles are defined in a similar way. 

Example 3. Find the partial derivatives for the function yez x cos . 

Solution. For the partial derivative xz  we suppose that y  is a constant 

then ycos  is a constant too. Hence we write 
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yeeyye
x

z x
x

x
x

x coscoscos
''

. 

 

Analogically for yz  we have 

 

yeyeye
y

z x
y

x
y

x sincoscos
''

. 

 

Example 4. Find the partial derivatives for the function   

 

222ln zyxu , 

 

where zyxu ,,  is the function of the three variables. 

Solution. Successively supposing y  and z , x  and z  and x  and y  are 

the constant values we get:  

 

222

'222 2
ln

zyx

x
zyx

x

u
x ; 

222

'222 2
ln

zyx

y
zyx

y

u
y ; 

222

'222 2
ln

zyx

z
zyx

z

u
z . 

 

The geometrical meaning of the partial derivatives of the function 

yxfz ,  is the following: 00, yxf  is equal to the slope, relative to Oх , 

of the tangent line to the section of the surface yxfz ,  by the plane 

0yy  drawn through the point 0000 ,, zyxM , that is tgyxfx ,  

(Fig. 3). It is similar for yxf y ,  . Now we can formulate the sufficient condi-

tion for differentiability of the function n321 ...,,,, xxxxfxf  of sev-

eral variables.  



9 

Definition 5. If partial derivatives ixxf  are defined in some  

neighborhood of the point x  and are continuous at the point 

n21 ...,,, xxxх  itself, then the function xf  is differentiable at this point. 

The function differentiable at each point of the domain of its definition is said 

to be differentiable in that domain.  

The function yxfz ,  is said to be continuous at the point 00, yx  if 

   

Fig. 3. A tangent line to the section of the surface yxfz ,   

by the plane 0yy  drawn through the point 0000 ,, zyxM  

 

4. Total and Partial Differentials.  

Applying the Total Differential to Approximate Calculation 
 

We begin with the second definition for differentiation of the function of 

two variables.  

Definition 6. The function yxfz ,  is said to be differentiable at  

a given point yx,  if its total increment is represented in the form 

z A x B y , where o  is an infinitesimal relative to , and 

2 2x y , coefficients 
x

z
A  and 

y

z
B  are independent of x  

and y .  

Now we can give a definition of the total differential of a function. 

y

 

yxfz ,  

0
0 
 

z
 

 
 

0y  

 

x
 
 

0x  

 

00, yx   
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Definition 7. The principal part of the total increment of a differentiable 

function which is a linear function of the increment of the independent varia-

bles is called the differential of the function 
z z

dz x y.
x y

 

We can see that the total differential of the function of two independent 

variables is equal to the sum of the products of the partial derivatives of the 

function by the differentials of the corresponding independent variables. 

These products are called partial differentials and denoted as  

 

x
x

z
zdx      and     y

y

z
zd y . 

 

If dxx  and dyy , then  

 

dx
x

z
zdx ,     dy

y

z
zd y , 

dy
y

z
dx

x

z
zdzddz yx . 

 

For the function n321 ...,,,, xxxxfxfu  of several variables the 

total differential is equal to  

 

1 2 3

1 2 3

n

n

f f f f
du d x d x d x ......... d x .

x x x x
 

 

A total differential is often used for approximate calculations of a func-

tion. For instance it is required to compute the function yxfz ,  at the 

point yyxx , , i. e. yyxxz , . It is now   

 

z f ( x x,y y ) f ( x,y ) , 

 

whence f ( x x,y y ) f ( x,y ) z.   
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If we suppose that dzz , then 

f f
f ( x x,y y ) f ( x,y ) dz f ( x,y ) dx dy.

x y
 

 

So we obtain the formula for computing the function yyxxz , . This 

formula is valid for small dxx  and dyy . 

Example 5. Find the total differential of the following functions:  

 

2 2 21 2) z x y; ) z x y . 

 

Solution. Let us find partial derivatives for the first function, then 

22
z z

xy, x ,
x y

 and the total differential has the form 

 
22dz xydx x dy.  

 

For the second function  

 

2 2 2 2

z x z y
, .

x yx y x y
 

 

Then its total differential is written as  

 

2 2 2 2 2 2

1x y
dz dx dy xdx y dy .

x y x y x y
 

 

Example 6. Calculate approximately the value 
02.2

04.1 . 

Solution. Let  

 

yy
xxyyxxf , , 

 

where 04.01xx , 02.02yy  that is 04.0dxx , 

1x , 02.0dyy , 2y  and 11, 2yxyxfz . Computing  
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1

(1 2) (1 2)2 0y y

; ;

f f
yx | , x ln x| ,

x y
 

 

and using the relation 
f f

f ( x x,y y ) f ( x,y ) dx dy
x y

 we ob-

tain 

 

08.108.0102.0004.02104.1
02.2

. 

 
5. Differentiating Composite Functions 

 

Let us suppose that z  is a composite function of two independent vari-

ables x  and y , that is, vufz , , where yxu ,  and yxv ,  are 

intermediate arguments. Thus   

 

z f ( ( x,y ), ( x,y )) F( x,y ). 

 

We also suppose that all the functions involved possess continuous partial 

derivatives and therefore are differentiable.  

To find 
x

z
zх  we must consider y  constant, and then u  and v  be-

come functions of only one variable x , therefore we arrive to the formula 

which we represent without a proof  

 

z z u z v z z u z v
.

x u x v x y u y v y
and, similarly  

 

Hence, we can derive the following rule. 

Rule. A partial derivative of a composite function is equal the sum of the 

products of the derivatives of the given function with respect to the inter-

mediate arguments (i. e. u  and v ) by the partial derivatives of these argu-

ments with respect to the corresponding independent variable ( x  or y ). 

This rule applies to functions of any number of independent variables 

and any number of intermediate arguments. 

(1, 2) (1, 2) 
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Let z  be defined as a function of arguments wvu ...,,,  which are func- 

tions of independent variables tyx ...,,, . Then 

 

z z u z v z w
........... ,

x u x v x w x

z z u z v z w
........... ,

y u y v y w y

...............................................................

z z u z v z w
........... .

t u t v t w t

 

 

In a particular case the arguments wvu ...,,,  may be functions of one 

independent variable, say, x . This means, that, ultimately, z  is a function 

dependent solely on x . In this case its ordinary derivative (called a total de-

rivative) is expressed by the formula: 

 

dz z du z dv z dw
........... .

dx u dx v dx w dx
 

 

If x  coincides with one of the arguments wvu ...,,,  for definiteness, ux , 

the latter formula yields: 

 

dz z z dv z dw
........... .

dx x v dx w dx
 

 

Let us consider the following examples. 

Example 7. Find the derivative of  

 

veuz 2
, 

 

where xu sin , xv cos . 

Solution. Using the formula for the derivative of the composite function 

 

dx

dv

v

z

dx

du

u

z
dz  
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we obtain  

 

xeuxue
dx

dz vv sincos2 2
. 

 

Substituting the function u  and v  in terms of x  into the expression of 

dx

dz
 we have  

 

3 22 2cos x cos xdz
e ( sin xcos x sin x ) e sin x( cos x sin x ).

dx
 

 

Example 8. Find the partial derivatives of the function  

 

vuez ln , 

 

where yxu cossin , yxv cossin . 

Solution. Applying the formulas for partial derivatives of the composite 

function 

 

z z u z v z z u z v
;

x u x v x y u y v y
 

 

and considering that  

 

x
x

u
cos ; y

y

u
sin ; x

x

v
cos ; y

y

u
sin ; 

u

e

u

z v

; 
vue

v

z
ln , 

 

we can write  

 

xuex
u

e

x

z v
v

coslncos ; yuey
u

e

y

z v
v

sinlnsin . 
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Finally, substituting u  and v  in terms of x  and y , we obtain  

 

yxyx eyxxe
yx

x

x

z cossincossin cossinlncos
cossin

cos
; 

 

yxyx eyxye
yx

y

y

z cossincossin cossinlnsin
cossin

sin
. 

 
6. Differentiating Implicit Functions 

 

Let the function yxF ,  be such that the equation 0, yxF  speci-

fies y  as the function of x : xy . The substitution of the function x  

for y  into this equation leads to the identity 0, xxF . It follows that the 

derivative of the function yxF ,  (where xy ) with respect to x  is also 

identically zero.  

On differentiating this expression according to the differentiation rule for 

a composite function we find: 

 

0''

dx

dy
FF yx , whence 

'

'

y

x

F

F

dx

dy
y . 

 

This formula expresses the derivative of the implicit function xy  in 

terms of the partial derivatives of the given function yxF , . The derivative 

y  does not exist at the point yx,  for which 0yF .  

In the general case the equation of the form 0,...,,,, utzyxF  spec-

ifies u  as a function of tzyx ...,,,, . By analogy with the foregoing case we 

find:  

 
'' '
yx t

' ' '

u u u

Fu F u u F
; ;.............. .

x F y F t F
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Example 9. Find the derivative of 
222 ayх .  

Solution. Let us differentiate this relation with respect to x , considering 

xy . Then 022 yyх , whence yхy .  

 

7. Directional Derivative. Gradient 

 

In order to study the notion of the directional derivative it is convenient 

to interpret this derivative as the rate of change of the function zyxfu ,,  

at the given point zyx ,,  in the direction of the axis l . The direction of the 

axis l  is given by the unit vector 0l  which forms the angles ,  and  with 

corresponding axes of coordinates, i. e. Ox , Oy  and Oz . The computation of 

the directional derivative is based on the following formula: 

 

coscoscos
z

u

y

u

x

u

l

u
, 

 

where cos , cos  and cos  are the direction cosines and simulta-

neously the coordinates of the unit vector 0l


.  

For the function yxfz ,  of two variables 0cos  and 

sincos . Then  

 

sincos
y

z

x

z

l

z
. 

 

The directional derivative can be considered as the original generaliza-

tion of the partial derivatives. 

Indeed, if 0 , 
2

, then the direction of the axis l  coincides 

with Ox -axis and 
u u

l x
 Analogously, if 

2
, 0 , then 

u u
,

l y
 and for 

2
 and 0 , then 

u u
.

l z
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The notion of the gradient of the function is closely connected with the 

directional derivative. 

 

Definition 8. The gradient of the function zyxfu ,,  is the vector 

whose projections (coordinates) are the values of the partial derivatives of the 

function, that is  

 

k
z

u
j

y

u
i

x

u
ugrad . 

 

It should be stressed that the projections of the gradient depend on the 

choice of the point zyx ,,  and may vary when the coordinates of the point 

change. 

Using the notion of the gradient we can rewrite the formula for the direc-

tional derivative in the form 

 

0lugrad
l

u 
. 

 

Consequently, the derivative of the function in a given direction is equal 

to the scalar product of the gradient of the function by the unit vector in that 

direction.  

But on the other hand it is obvious that the derivative of a function in a 

given direction is equal to the projection of the gradient of the function on the 

axis l  along which the differentiation is carried out, that is  

 

cosugrad
l

u
, 

 

where  is the angle between the vector ugrad  and the axis l  

(Fig. 4). 

It follows immediately that the directional derivative attains its greatest 

value for 1cos , i. e. for 0 , this greatest value being equal to ugrad . 

Thus ugrad  is the greatest possible value of the derivative 
l

u
 at the given 
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point zyxP ,, , and the direction of the vector ugrad  coincides with the di-

rection of the axis issued from the point zyxP ,, , and the direction of the 

vector ugrad  coincides with the direction of the axis issued from the point 

zyxP ,,  along which the rate of change of the function is the greatest, that 

is, the direction of the gradient is that of the fasted increase of the function. 

 

 
 

Fig. 4. The angle  between the vector ugrad  and the axis l  

 

Let us consider the example. 

Example 10. Find the derivative of the function 
y

x
z  at the point 

1,1M  in the direction of the line l : 
2xy  along the negative semi-axis Ox .  

Solution. To compute the derivative 
l

z
 we take the formula  

 

0lzgrad
l

z 
, 

 

where j
y

z
i

x

z
zgrad  and 0l


 is the unit vector of the direction l .  

y

 

ugrad

 

0
0 
 

z
 

 
 

x  
 

lu

/∂l 
 

zyxP ,,  
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For the first we find the gradient of the function z  at the point 1,1M  
 

1
1

1;11;1 yx

z
;     1

1;1
2

1;1 y

x

y

z
, 

whence jizgrad . 

In the second place we compute the unit vector 0l


 of the direction l , 

i. e. cos  and sin . Then 22tan
1;1

xyx , and  

 

2 2

1 1 2

5 51 1

tan
cos ; sin .

tan tan
 

 

Hence   
 

5

2
;

5

1

tan1

tan
;

tan1

1
sin;cos

22
0l


. 

 

 Now we find the scalar product of the vectors zgrad  and 0l


. 

 We obtain  
 

5

1
2

5

1
0 jijilzgrad

l

z 
. 

 

8. The extreme of the Function of Two Variables.  

Determining the Greatest and the Least Values of the Function 

 

Here we consider only the case of the function of two variables, be-

cause for the function of any number n of independent variables the notion of 

the extreme is defined quite similarly.  

The definition of the point of the extreme of the function of two variables 

is analogous to the corresponding definition for the function of one variable.  

Definition 9. The point 000 , yxP  is said to be the point of the extreme 

(the point of the maximum or the point of the minimum) of the function 

yxfz ,  if, respectively, 00, yxf  is the greatest or the least value of the 

function yxf ,  in the neighborhood of the point 000 , yxP . 
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Now we establish without proof the necessary condition for the function 

yxfz ,  to attain an extreme at the point 000 , yxP . 

A necessary condition for the extremum. If the differentiable function 

yxfz ,  attains an extremum at the point 000 , yxP  its partial derivatives 

turn into zero at that point 
 

0 0

0 0

0 0
x x x x
y y y y

z z
, .

x y
 

 

It should be stressed that a continuous function of two variables may 

have an extreme at a point where it is not differentiable (for instance, such an 

extreme may correspond to a cuspidal point of the surface at the graph of the 

function).  

The point at which both partial derivatives of a continuous function 

yxfz ,  turn into zero or don't exist is referred to as a stationary or critical 

point of the function yxf , .  

But the necessary test for an extreme of a function of two variables es-

tablished above is not sufficient. This means that the fact that the partial de-

rivatives are zero or don't exist at a given point does not imply that this point 

is necessarily a point of extreme.  

For instance, for the function xyz  its partial derivatives yzx  and 

xzy  are equal to zero at the origin where the function has no extreme. 

We must note that sufficient conditions for the extremum for a function 

of several independent variables are essentially more complicated than in the 

case of a function of one argument.  

Here we shall state without proof sufficient conditions for a function of 

two independent variables. 

Sufficient conditions for the extremum of a function of two varia-

bles. 

Let the function yxfz ,  be continuous together with its partial de-

rivatives of the first and second orders and let 000 , yxP  be a stationary 

point of the function, that is  
 

0 0

0 0

0 0
x x x x
y y y y

z z
, .

x y
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Let us compute the values of the second derivatives of the function 

yxf ,  at the point 000 , yxP  and denote them, for briefness A, B  and C : 

 

0 0 0

0 0 0

2 2 2

2 2
; ;

x x x x x x
y y y y y y

z z z
A B C .

x x y y
 

 

If 02BAC , the function yxf ,  has an extreme at the point 

000 , yxP  which is a maximum if 0A  and a minimum if 0A  ( the condi-

tion 02BAC  implies that A and С  are necessarily of one sign).  

If 02BAC , there is no extreme at the point 000 , yxP . 

If 02BAC , the properties of the second derivatives don't provide 

any answer to the question of existence of an extreme, and further investiga-

tion is needed. 

Example 11. Find the extreme of the function 

 

yxayxz 23
. 

 

Solution. Rewrite this function in the form: 

 

332423 yxyxyaxz . 

 

Now let us find the first partial derivatives 

 

yxayxyxyxyax
x

z
343343 22322322

, 

yxayxyxyxyax
y

z
322322 32343

. 

 

It is evident that the derivatives turn into zero at the point 0,00P . The 

next critical point can be found from the system: 

 

1

4 3 3
2 3 2 3

2 3 2

x y a
x a / , y a / P( a / ;a / ).

x y a
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To establish the point of the extreme we should find the second derivatives: 

 

 

0 0 0

2
2 2 2 3 2

2

2
3 4 3 3

2

2
2 3 2 2 2

2 2 2

2 2

6 12 6 6 2

2 2 6 2 3

6 8 9 6 8 9

0 0 0( P ) ( P ) ( P )

z
axy x y xy xy ( a x y ),

x

z
ax x x y x ( a x y ),

y

z
ax y x y x y x y( a x y ),

х y

z z z
A ; C ; B .

x y x y

 

 

Then 0
0

2

P
BAC . But from the form of the function z  we can say 

that there is no extreme at the point 0,00P  and 00Pz .  

At the point 3,21 aaP   

 

1 1 1

2 4 2 4 2 4

2 2
0 0 0

9 8 12
( P ) ( P ) ( P )

z a z a z a
A ,C , B .

x y x y
 

 

Then 014482

1

aBAC
P

. There is an extreme at the point 

3,21 aaP . Since A and C  are less than zero, then at that point the func-

tion 
4323298

623

1

aaa
a

aa
Pz  has the maximum value.  

And now we turn to determining the greatest and the least values of the 

functions of two variables in some closed domain. 

Suppose it is required to determine the greatest and the least values of 

the function yxfz ,  in a closed domain. If one of these values (or both) is 

attained inside the domain, it must of course be an extreme's value, But it 

may turn out that the greatest or the least value of the function (or both) is at-

tained at a point belonging to the boundary of the domain. Therefore, to de-

termine these values, we have to find a local extreme either at the interior 

points of the domain or at the boundary points and compare their magnitudes. 
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Example 12. Find the greatest or the least value of the function 

 

yxyxz 42
 

 

in the closed domain, bounded by the lines: 0x ; 0y ; 6yx . 

Solution. The given domain S  is the triangle OBC , including the 

boundary (see Fig. 5).  

 

y

0 2 4 х

2

4

M

6

N

В

С

S

 

Fig. 5. The triangle OBC  or the domain S  

 

As we know the continuous function attains the greatest and the least 

values either inside the domain or at the boundary points of the domain. 

Let us research this function inside the domain. Using the necessary 

condition of the extreme of the function of two variables, we obtain:  

 

2 2

2 3 2 2

8 3 2 8 3 2

4 2 4 2

z
xy x y xy xy( x y ),

x

z
x x x y x ( x y ).

y

   

 

Since 0x  and 0y  are the boundary points, then the stationary 

points can be found from the linear system of the equations: 
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3 2 8
2 1 2 1

2 4

x y ,
x ; y ; M( ; ).

x y
 

 

Now we calculate the value of the function z  at that point  

 

4124122

1;2N
z . 

 

 At the boundaries OB  and OC  of the domain the function 0z . Let us 

investigate the behavior of the function at the boundary BC  where xy 6 . 

Then  

 
2 2 3 2

2

6 4 6 2 6 2 12

6 24 6 4'

x

z x ( x )( x x ) x ( x ) x x ,

z x x x( x ).
 

 

 Since 0x , then 404 xx  and 2466 xy . We 

have the stationary point 2;4N . Compute the value of the function at that 

point  

 

64244242

2;4N
z . 

 

 Thus 4
M

z  is the greatest value of the function and 64
N

z  is the 

least value of the function. 

 We may conclude that the function attains the greatest value inside the 

domain and it reaches the least value at the boundary BC  of the domain (at 

the point N ). 

Example 13. Find the extreme of the function 

 
3 23 15 12z x xy x y. 

 

Solution. Now let us find the first partial derivatives: 

2 23 3 15 6 12
z z

x y ; xy .
x y
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 The next critical points can be found from the system: 

 

2 2

1 2 3 4

5
1 2 2 1 1 2 2 1

2 0

x y ,
P( ; ); P ( ; ); P ( ; ); P ( ; ).

xy
 

 

 To establish the point of the extreme we should find the second deriva-

tives: 

 

2 2 2

2 2
6 6 6

z z z
x, y, x,

x х y y
 

 

 for the point 1P : 6A ; 12B ; 6C ; 0144362BAC  there is 

no extreme,  

 for the point 2P : 12A ; 6B ; 12C ; 0361442BAC  there 

is an extreme, 281;2min zz , 

for the point 3P : 6A ; 12B ; 6C ; 0144362BAC  

there is no extreme,  

for the point 4P : 12A ; 6B ; 12C ; 0361442BAC  

there is an extreme, 281;2max zz . 

 

9. A Conditional Extreme 

 

Consider the problem of the extreme of the function of several varia-

bles, assuming that these variables are also subject to some constraint equa-

tions. We begin with the case of the function of two variables, because it is 

the most simple case.  

Suppose it is required to find the extreme of the function yxfz , , 

where the variables x  and y  are subject to the equation 0, yx  . The 

last equation is called a constraint equation, or, simply a constraint (also a 

coupling or a subsidiary condition). 

Definition 10. The function yxfz ,  of two variables is said to have 

a conditional  or relative maximum (minimum) at  the point  00, yx  satisfying  
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the constraint equation 0, yx , if the inequality  

 

00,, yxfyxf      00,, yxfyxf  

 

holds in some neighbourhood of the point 00, yx  for all the points yx,  

satisfying the constraint equation 0, yx . 

Note that the point of the unconditional extreme is always the point of 

the conditional extreme, but the converse is not true: the point of the condi-

tional extreme is not necessarily the point of the ordinary extreme. 

If the constraint equation 0, yx  admits of the expressions of y  as 

an explicit function of x , i. e. xy , we can substitute x  for y  into the 

function yxfz ,  to obtain the function of one variable   

 

xFxxfz , . 

 

On finding the values of x  for which this function attains an extreme 

and determining the corresponding values of y  from the equation 0, yx  

we obtain the desired points of the conditional extreme. 

If the subsidiary condition is expressed by a complicated equation and if 

it is impossible to express explicitly one variable in terms of the other one the 

problem becomes more difficult. We can somewhat simplify the problem by 

considering the derivatives of the functions yxfz ,  and yx, , i. e. xz  

and x , bearing in mind that the variable y  is the function of the variable x  

and at the point of the extreme 0xz  and 0x  from the constraint 

0, yx . Then  

 

0 0' '

x x

dz f f dy d dy
z .

dx x y dx dx x y dx
and  

 

Consider the method for obtaining the necessary conditions for a condi-

tional extreme, using the so-called Lagrange's method of multipliers. We mul-

tiply  the equality for  the derivative x  by some multiplier  and add together  
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the expressions for xz  and x . As a result, we get 

 

0

0

f f dy dy

x y dx x y dx

f f dy
.

x x y y dx

or

 

 

We choose the multiplier  on the condition that at the point of the extreme 

 

0
yy

f
. 

 

But for these values of x  and y  it follows that  

 

0
xx

f
. 

 

Thus, for the points of the extreme we have three equations: 

 

0,

0

0

yx

xx

f

yy

f

                                         (1) 

 

with three unknown yx,  and .  

So the necessary conditions for a local conditional extreme of the func-

tion yxfz ,  with the constraint equation 0, yx  can be obtained in 

the following way: consider Lagrange's function  

 

L( x,y, ) f ( x,y ) ( x,y ),  
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where  is some constant, the necessary conditions for a local condi-

tional extreme of the function ,, yxL  are fulfilled in the usual form: 

 

0

0

L f
;

x x x

L f
.

y y y

 

 

To determine the multiplier , we add to these conditions the constraint 

equation 0, yx  that is 0L / . As a result we have the same 

system (1). Solving this system we can find the unknown yx,  and  which 

plays an auxiliary role and we don't need it in further investigations. 

In the most general case the problem is posed as follows: given the 

function n321 ...,,,, xxxxfu  of n  variables, it is required to find its ex-

treme on condition that the variables are subject to nmm  subsidiary 

conditions:  

 

1 1 2 3

2 1 2 3

1 2 3

0

0

0

n

n

m n

( x ,x ,x ,........,x ) ,

( x ,x ,x ,........,x ) ,

.......................................

( x ,x ,x ,........,x ) .

 

 

In this case the auxiliary function of n  variables involves additional un-

known parameters (Lagrange's multipliers)  

 

1 2 1 2 1 2 1 2

1

m

n m n i i n

i

L( x ,x ,....,x , ) f ( x ,x ,....,x ) ( x ,x ,....,x ).

 

To find the points of the extreme of this function we form a corresponding 

system of mn  equations from which the possible values of the coordinates 

n21 ...,,, xxx  of the points of the conditional extreme are found. 

Here we don't discuss sufficient conditions for the points of the condi-

tional extreme; in a concrete problem the given conditions often make it pos-
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sible to find out whether the point determined from the above equations is an 

extreme point without resorting to sufficient conditions.  

Note that for the function of two variables, if the found point 00, yx  is 

the critical point, the sufficient condition can be written as  

 

0
yyyx

xyxx

LL

LL
. 

 

At that point there is the extreme. 

It will be maximum if 0 0'' ''

xx yyL ( L ) at that point and minimum, 

when 0 0'' ''

xx yyL ( L )  at the indicated point.  

If 0  there is no extreme at that point and for 0  an additional in-

vestigation is required. 

And now let us consider some examples. 

Example 14. Find an absolute and a conditional extreme of the function  

2 2 1 0z x y x y .with the constraint  

Solution.  

1) The absolute extreme. 

First of all we have to find the critical points of the function under con-

sideration using a necessary condition 

 

2

2 0 2 0 0 0

2

z
x

x
x , y , x ; y .

z
y

y

i.e.  

 

The point 0,0  is the critical point. Since the function z  is the unbounded  

function for x ( ; ), y ( ; ),then 0,0  is the point of 

minimum and 00;0min zz .  

2) The conditional extreme. 

Note that we can seek the points of the conditional extreme for the val-

ues x  and y , satisfying the constraint 01yx . By means of the con-
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straint equation we can write y  in terms of x , therefore this problem can be 

resolved without using Lagrange's function.  

Resolve the constraint with respect to y , i. e. xy 1  and substitute it 

into the expression for z .  

We obtain 
22 1 xxz  as a function of one variable х . Research it 

for the extreme  
 

2

1
01122 xxx

dx

dz
. 

 

If 21х , then 21211y , i. e. the conditional extreme is attained at 

the point 2/1,2/1P .  

At that point  

 

2121121
22

z  

 

and has a conditional extreme, since z  is the unbounded function.  

The point 2/1,2/1,2/1M  is the vertex of the parabola obtained as a 

result of intersection of the paraboloid 
22 yxz  with the plane 

01yx .  

In Fig. 6 the point 0,0,0O  is the point of the absolute extreme for z  

and the point 2/1,2/1,2/1M  is the point of the conditional extreme of the 

function z  with the constraint 01yx . 

Example 15. Find a conditional extreme of the function 
2 2

4
z cos x cos y y x .on the sabsidiary condition 

2 2

4
z cos x cos y y x .on the sabsidiary condition  

Solution. We can solve this problem by two methods. 

Method 1. Let us construct a Lagrange's function 

 

2 2 4L( x,y, ) cos x cos y ( y x / )  

 

and write down the system of equations to determine the critical points and 

the parameter   
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Fig. 6. Intersection of the paraboloid with the plane 

 

2 0

2

2 0 2

0 4
4

L
cos x sin x ;

x sin x ;
L

cos y sin y ; sin y ;
y

y x .
y x .

 

Since 0cossin22sin2sin yxyxyx  0  and 

0cos yx , then 0sin yx , whence Zkkyx , . 

Consider the following system 

 

4y x / ;

y x k.
 

 

Its solution has the form  

 

y

 

1/2 0 
 

    z 
 

1/2 
 

x  
 

1/2 

M 
 

1 
 

P 
 

1 
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2 8

2 8

k

k

k
x ;

k
y , k Z .where

 

 

10. Applying the Differential to Approximate Calculations 

 

And now we have to find the second derivatives of the function L  and 

use the sufficient condition of the conditional extreme 

 

x
x

L
Lxx 2cos2

2

2

;     y
y

L
Lyy 2cos2

2

2

; 

0
22

xy

L

yx

L
LL yxxy , 

 

then 

 

 yx
y

x

LL

LL

yyyx

xyxx
2cos2cos4

2cos20

02cos2
. 

 

At the point kk yх ,  we have  

 

4 4 4 2 2 20

2 4

2 2 4 20

2 2 4

2 2 3 4 20

k k

k k

(x;y)

(x;y)

cos(k / )cos(k / ) cos k

''k=2nL cos(k / )xx

cos( n / ) ,

''k=2n+1L cos( n / )xx

cos( n / ) .

and

for

for

,

,

 

      

It means there is a conditional maximum  
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2 2 1
8 812 4

2

1 1212 2
12 4 1
2 2424 2

maxzcos(n/)cos(n/) cos(n/)

cos(n/)

 

at the points nn yx 22 , , and there is a conditional minimum 

 

 

2 22 8 2 8

1 1
1 2 34 1 2 54

2 2

1 21 2 2
1

2424 2

minz cos(n / /)cos(n / /)

cos( n / ) cos( n / )

.

 

 

at the points 1212 , nn yx . 

Method 2. Using the constraint equation 4y x / , we can find the  

conditional extreme without Lagrange's function. Substitute 4y x /  in 

the equation for z , then   2 2 2 2 4zcosxcosycosxcos(x/). 

We have the function of one variable x  and investigate it for the ex-

treme. The necessary condition is: 

 

2 2 4 4 2

22 220

dz
cosxsinxcos(x/)sin(x/)sinx

dx

sin(/ x)sinxcosx,

 

 

but  

 

22 22 22 2

2 42 42 42

42042

sinxcos(/ x) cos(/ x)cosx

sin(/ x)sin(/) sin(/ x).

sin(/ x) / xk,kZ

then

Finally

and

       

28 28
k k

k k
x ,y  are the points of a possible extreme. The sec-

ond sufficient condition for the extreme is:  
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22222242

224 4222

''

xxzcosxsinx sin(/x)

sin(/k/) sin(/k)

 

122 122kcos(k)() . 

 

For nk 2  022xxz  and at the point nn yx 22 ,  we have a con-

ditional maximum 221maxz , for 12nk  022xxz  and at the 

point 1212 , nn yx  there is a conditional minimum 221minz . We see 

that the answers obtained by two methods coincide. 

As an application of the theory of conditional extreme the question on 

the greatest and the least value of the function of several variables on 

a bounded closed set can serve, we have considered how local extremes are 

found at the interior points of a set when certain constraints are imposed on 

a function xf .  

Let us now show how local extremes are found at boundary points. For 

the sake of simplicity, let us confine ourselves to the case of three variables. 

Let the surface defined by the equation 0,, zyx  be the boundary of the 

domain of change of the variables yx,  and z  in which the function 

zyxfu ,,  is defined and let the functions zyxf ,,  and zyx ,,  have 

continuous partial derivatives of the second order.  

Then we arrive at the following problem: find the points of the maximum 

or the minimum of the function zyxfu ,,  under the condition that 

0,, zyx . This is just a problem of a conditional extreme. 

Example 16. The canal section has a form of the isosceles trapezoid of 

a given area S . How can we choose its dimensions the washed surface to be 

the least? 

Solution. Denote as l  and a  the lateral side and the lesser base of the 

trapezoid respectively. Let  be the inclined angle of the lateral side. Then 

there are the following relationships between the altitude h  and the greater b  

base of the trapezoid (Fig. 7). 

Here  
 

cos2,sin/,sin labhllh . 
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Denote the least washed surface as u . It is obvious that 

sin/22 haalu , where u  is the function of three variables h , a , 

. Reduce u  to the function of two variables. For this purpose express the 

known area S  in term of h , a  and .  

 

a

hl

b

 
Fig. 7. The isosceles trapezoid of the given area S  

 

By this expression we can write aS/hhctg. Now u  can be writ-

ten as a function of two variables h  and , i. e.  

 

2 2h hS
u a hctg.
sin sinh

 

 

Use the necessary condition for the extreme  

 

2 2

2 2 2

2 2

2
12 0

u S S
ctg ctg

hsinh sinh

uhcos h h
cos .

sin sin sin

 

 

The second equation of this system can be fulfilled when 0h  or 

0cos21 . But 0h  since h  is the depth of the canal, then 21cos  

and 
o603 ; 23sin . By the first equation of the system we 

have: 

 

2

2 2 4

41
3

33 33

S S SS
hh.

h h
or and  
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It follows that the critical values of 
43 3

S
h .and  Let us define the 

values of the second order derivatives for the found quantities of  and h : 

 

4

2

2 3

2

2 3 2

4
3

4
3 3

3
3

2 2 63

2 2
12

h S/

h S/ ; /

S/

uS S

hh S

u h hsin
cos

sin sin

 

 

4

4

2 2

2 2
3

2 38

34 33

2 1
0

/

S/ S

/

u u cos
.

h h sin sin

 

 

2 2

2

42 2

4
2

63
0

163
0

8 3
0

33

u u

h Sh
.

Su u

h

=
 

 

There is an extreme, in particular a minimum, since 0 and 0
2

2

h

u
. As 

a result  

 

42 3minu S . 

 

Now consider the same problem by means of Lagrange's multipliers 

method on admitting  

 

2 2h hS
u aandahgt hctg.
sin sinh
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For that purpose construct the Lagrange's function: 

 

2

2

2

h
L(h, a,) a ahctghS

sin

h
a ahhctgS,

sin

 

 

and write down a corresponding system for the determination of  and the 

coordinates of the critical points 

 

2

2 2

2
2 0

2
0

L
a hctg ;

h sin

L hcos h
;

sin sin

 

 

2

1 0

0

L
h ;

a

L
ah hctg S .

 

 

By the third equation we obtain 
h

1
. On substituting its value into 

the rest of the equations we have: 

 

2 2

2

2
2 0

2
0

0

a
ctg ;

sin h

hcos h
;

sin sin

ah h ctg S .

 

From the second equation we get 1cos2 ; 21cos ; 
o60

3
. 

So the system gains the form: 
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2

4 2
0

3 3

0
3

a
;

h

h
ah S .

 

 

By the first equation 
2

3a
h . Substitute it into the second equation and we 

obtain  

 

2 34 43234 23 3aa/a/S,aS/ hS/.hence and  

 

We receive the dimension coinciding with the previous values. As an addi-

tion we have to note what the economic sense of Lagrange's multipliers is. 

The economic sense of Lagrange's multipliers is the following: the number of 

Lagrange's multipliers has an influence on the supplies of resources of some 

production and in the end on the profit. Non-zero multipliers indicate that the 

corresponding resources are in short supply and they should be increased.  

Zero multipliers say that the corresponding resources are in plenty and 

they may be decreased. The reader can know more details about it in the 

Course of Mathematical Programming. 

 

 

11. Economic Interpretation 

 

 Marginal products. For a function of one variable xfy  the deriva-

tive xf  measures (infinitesimally) how a x -change in x  to y : 

 

xxfy .  

 

The same interpretation applies to functions of several variables. For exam-

ple, let LKFQ ,  be a production function, which relates the output Q  to 

amounts of capital input K  and labor input L . If the firm is presently using 

*K  units  of capital and 
*L  units of  labor to produce 

*** , LKFQ  units of  
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output, then the partial derivative 

 

**, LK
K

F
 

 

is the rate at which output changes with respect to capital K , keeping L  

fixed at 
*L . If capital increases by K , then output will increase by  

 

KLK
K

F
Q **, . 

 

Setting 1K , we see that 
**, LK

K

F
 estimates the change in output due 

to one unit increase in capital (with L  fixed). Hence, 
**, LK

K

F
 is called  

the marginal product of capital or MPK. Similarly, 
**, LK

L

F
 is the rate at 

which output changes with respect to labor, with capital held fixed at 
*K . 

Since it is a good estimate of the change in the output for one unit increase in 

labor input, 
**, LK

L

F
 is called the marginal product of labor (often abbre-

viated as MPL). 

 Example 17. Consider the Cobb-Douglas production function 

41434 LKQ . When 10000K  and 625L , the output Q  is  

 

200005104625100004625;10000 34143Q . 

 

 Computing partial derivatives,  

 

41414141 3
4

3
4 KLKL

K

Q
 

 

(remember to treat L  as a constant) and 
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43434343

4

1
4 LKLK

L

Q
 

 

(treating K  as a constant). Furthermore, 

 

1.5
10

53

000 10

6253

000 1062533

41

41

4141

625000; 10

4141

625000; 10

KL
K

Q

;               (2) 

 

8
5

10

625

000 10

625000 10

3

3

43

43

4343

625000; 10

4343

625000; 10

LK
L

Q

.                 (3) 

 

If L  is held constant and increased by K , Q  will increase by approx-

imately K5.1 . For an increase in K  of 10 units, use (2) to estimate 

625010; 10Q  to be  

 

015 20101.5000 20Δ1.5625000; 10625010; 10 KQQ . 

 

 Similarly, because of (3), a 2-unit decrease in L  should induce  

a 16288 Q -unit decrease in Q . Consequently, we estimate 

623;00010Q  to be  

 

984 1916000 2028625000; 10623000; 10 QQ . 

 

 Elasticity. If IPPQQ ,, 2111  represents the demand for good 1 in 

terms of the prices of goods 1 and 2 and income, then 

1

1

P

Q
 is the rate of 

change of demand with respect to the owner price. If the price of good 1 rises 

by a small amount 1P , the demand for good 1 will change roughly by 
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1
1

1
1 P

P

Q
Q .                                              (4) 

 

 In general, we would expect 

1

1

P

Q
 to be negative. The quantity 

1

1

P

Q
 is 

unsatisfactory as a measure of price sensitivity because it depends too heavi-

ly on the units used. To remove this dependency on units, economists meas-

ure the sensitivity of demand in percentage terms. More precisely, they define 

the owner price elasticity of demand as  

 

1

1

1

1

11

11
1

ΔP

ΔQ

Q

P

PΔP

QΔQ

%priceowner theinchange

%demandinchange
ε . 

 

Since 

 

1

1

1

11111

1

1

P

Q

P

PQPPQ

P

Q
 

 

for small 1P  by (4), this elasticity in calculus terms is 

 

**
2

*
11

**
2

*
1

1

1*
1

1
,,

,,

IPPQ

IPP
P

Q
P

. 

 

 It is usually negative. If it lies between -1 and 0, good 1 is called inelas-

tic. If this elasticity lies between  and -1, good 1 is called elastic – a small 

percentage change in price results in a large percentage change in the quan-

tity demanded.  

 To study the sensitivity in demand of one good to price changes in oth-

er goods, economists use the cross price elasticity of demand 

 

. 

 22

11
,

%2

%1
21 PP

QQ

goodofpriceinchange

goodfordemandinchange
PQ
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Individual tasks 

 

1. Find and plot the domain of the definition of the function.  

2. Find partial derivatives of the first and the second orders, check 

the equality of the mixed partial derivatives xyz  and yxz , write down  

a differential of the first and the second orders of the function.  

3. The function yxfz ,  and the points 1M  and 2M  are given. 

Find a derivative of this function at the point 1M  in the direction 21MM  

and 1Mzgrad . 

4. Find a local extreme of a function. 

 

Variant 1 

 

1) 
yx

xy
z

52

3
; 

2) 2yez xy
; 

3) xyyxz 22
; 1,11M ; 4,32M ; 

4) yxyxyxz 9622
. 

 

Variant 2 

 

1) yxz arcsin ; 

2) yez yx 2
2

; 

3) 35xyz ; 1,21M ; 3,42M ; 

4) 1022 22
yxz . 
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Variant 3 

 

1) 22 xyz ; 

2) xez xy 2
2

; 

3) 22ln yxz ; 2,11M ; 2,01M ; 

4) 15 22
yxz . 

 

Variant 4 

 

1) 224ln yxz ; 

2) 232

yez yx
; 

3) 
22 yxez ; 0,01M ; 4,32M ; 

4) xyyxz 333
. 

 

Variant 5 

 

1) 226

2

yx
z ; 

2) 232

xez yx
; 

3) yxyz ln ; 3,21M ; 1,22M ; 

4) 22 422 yxxyz . 
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Variant 6 

 

1) 522 yxz ; 

2) yez yx 2
32

; 

3) 221 yxz ; 1,11M ; 2,32M ; 

4) 362 xyxyxz . 

 

Variant 7 

 

1) yxz arccos ; 

2) 23
32

yez yx
; 

3) 22 xyxz ; 1,11M ; 1,22M ; 

4) 2352 22 yxxyz . 

 

Variant 8 

 

1) 
yx

yx
z

2

3
; 

2) xez xy 2
3

; 

3) xy yexez ; 0,11M ; 1,42M ; 

4) 922 yxxyz . 
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Variant 9 

 

1) 229 yxz ; 

2) yez xy 2
3

; 

3) yxxyz 23 ; 1,11M ; 1,32M ; 

4) yxxyz 12 . 

 

Variant 10 

 

1) 3ln 22 yxz ; 

2) yez xy 2
3

; 

3) xyyxz 225 ; 1,11M ; 3,92M ; 

4) 10232 22 yxxyz . 

 

Variant 11 

 

1) 222 yxz ; 

2) 22
3xyez ; 

3) 22 yx

x
z ; 2,11M ; 2,32M ; 

4) 168 33 xyyxz . 
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Variant 12 

 

1) 
13

4

yx

xy
z ; 

2) 223

yez yx
; 

3) xyyz 22
; 1,31M ; 1,22M ; 

4) yxyxyz 62
. 

 

Variant 13 

 

1) 
22 yx

xy
z ; 

2) yez yx 2
23

; 

3) xyyxz 222
; 1,11M ; 1,52M ; 

4) 206922 yxyxyxz . 

 

Variant 14 

 

1) 22ln xyz ; 

2) xez yx 2
23

; 

3) 21ln yxz ; 1,11M ; 5,32M ; 

4) yxxyz 6 . 
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Variant 15 

 

1) 
y

x
z arcsin ; 

2) 22
23

yez yx
; 

3) 52 22 yxz ; 2,11M ; 2,32M ; 

4) yxxyyxz 22
. 

 

Variant 16 

 

1) 
yx

yx
z

3

3

; 

2) 24

yez yx
; 

3) 1ln 33 yxz ; 3,11M ; 1,42M ; 

4) yxyxyxz 222
. 

 

Variant 17 

 

1) yxz 2arccos ; 

2) yez yx 2
4

; 

3) yxz 2 ; 5,41M ; 3,22M ; 

4) 22
21 yxz . 
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Variant 18 

 

1) 
4

23
22 yx

yx
z ; 

2) yez yx 2
4

; 

3) 
22yxz ; 5,11M ; 7,32M ; 

4) 22 23 yxxyz . 

 

Variant 19 

 

1) 229ln yxz ; 

2) 24

xez yx
; 

3) yxz 23 ; 3,21M ; 2,52M ; 

4) 22 23 yxz . 

 

Variant 20 

 

1) 
5

1

22 yx
z ; 

2) xez yx 2
4

; 

3) yxz ; 1,31M ; 1,12M ; 

4) 222 yxyxz . 
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Variant 21 

 

1) 223 yxz ; 

2) 22
4

xez yx
; 

3) xyez ; 0,51M ; 4,22M ; 

4) yxyxyz 142 2
. 

 

Variant 22 

 

1) 
yx

yx
z

52

4
; 

2) 24

yez xy
; 

3) 
322 yxz ; 2,11M ; 1,02M ; 

4) 568 33 xyyxz . 

 

Variant 23 

 

1) yxz 2arcsin ; 

2) yez xy 2
4

; 

3) yxxz y 3 ; 2,21M ; 0,12M ; 

4) 22 22151 yxyxxz . 
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Variant 24 

 

1) 224

5

yx
z ; 

2) 24

xez xy
; 

3) 22 yyxz ; 2,01M ; 5,122M ; 

4) 2261 yxyxxz . 

 

Variant 25 

 

1) yxz 2ln ; 

2) 22
4

yez xy
; 

3) 
1

10
22 yx

z ; 2,11M ; 0,22M ; 

4) 201839623 yxxyyxz . 

 

Variant 26 

 

1) 
yx

yx
z

4

7 3

; 

2) 23
23

xez yx
; 

3) 221ln yxz ; 1,11M ; 4,52M ; 

4) 5622 33 xyyxz . 
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Variant 27 

 

1) yxz 1 ; 

2) 323

xez yx
; 

3) 
x

y

y

x
z ; 1,11M ; 3,22M ; 

4) 10933 33 xyyxz . 

 

Variant 28 

 

1) 122 yx
ez ; 

2) 23

yez yx
; 

3) xyxyxz 623
;  3,11M ; 2,42M ; 

4) 122 yxyxyxz . 

 

Variant 29 

 

1) 
6

1
22 yx

z ; 

2) yez yx 3
3

; 

3) 
x

y

y

x
z ; 2,21M ; 4,32M ; 

4) 224 yxyxz . 

Variant 30 

 

1) yxz arccos ; 

2) 22
3

yez yx
; 

3) yxez ; 0,11M ; 4,22M ; 

4) 22 336 yxyxz . 
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Theoretical questions 

 

1. A set of points.  

2. A range of a function. 

3. The domain of the definition of the function. 

4. The function of two variables. 

5. A geometric interpretation of the function of two variables.  

6. The surface and the plane.  

7. A tangent line to a section of a surface. 

8. An implicit function. 

9. An explicit function. 

10. The xOy -plane.  

11. A limit of a function. 

12. The -neighbourhood of a point.  

13. A continuous function.  

14. A continuity at a point 00, yx .  

15. A total increment of the function of two variables.  

16. A linear function of the increment. 

17. The principal part of the total increment. 

18. A partial increment of the function of two variables.  

19. A partial derivative of the function of two variables. 

20. A sufficient condition for differentiability. 

21. An independent variable and a dependent variable. 

22. An argument of a function. 

23. An original generalization of the partial derivatives. 

24. The function of three variables. 

25. A geometrical meaning of partial derivatives. 

26. A function differentiable at a point. 

27. A total differential of a function. 

28. A partial differential of a function. 

29. An approximate calculations of a function. 

30. Applying the total differential to approximate calculation. 

31. The differentiation of the function of two variables. 

32. An infinitesimal value. 

33. A composite function of two independent variables. 

34. An intermediate argument. 
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35. A definiteness. 

36. A composite function. 

37. A directional derivative. 

38. The unit vector. 

39. Direction cosines. 

40. A gradient of a function. 

41. Projections of a vector. 

42. Projections of a gradient. 

43. A scalar product of vectors. 

44. The point of extreme of the function of two variables. 

45. The point of maximum or the point of minimum. 

46. A necessary condition for the extremum. 

47. A cuspidal point of a surface. 

48. A stationary or critical point of a function. 

49. A sufficient condition for the extremum. 

50. A second derivative of a function. 

51. The greatest and the least values of a function. 

52. A closed domain. 

53. A boundary of a domain. 

54. An interior point of a domain. 

55. A boundary point. 

56. A magnitude. 

57. A coupling or a subsidiary condition. 

58. An unconditional extreme. 

59. A point of a conditional extreme. 

60. The necessary conditions for a conditional extreme. 

61. Lagrange's method of multipliers. 

62. Necessary conditions for a local conditional extreme of a function. 

63. A Lagrange's function. 

64. Lagrange's multipliers. 

65. Sufficient conditions for the points of a conditional extreme. 

66. An absolute and a conditional extreme of the function. 

67. A constraint equation or a constraint. 

68. A canal section, an isosceles trapezoid.  
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