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Introduction 

 

Probability theory is the branch of mathematics which studies proper-

ties, laws and the analysis of mass random phenomena. The basic objects of 

probability theory are random variables, stochastic process and random 

events. In practice we often deal with random events, i.e. with events which 

can occur or can’t occur under definite conditions which can’t be analyzed by 

direct computations. Analysis of quantitative laws which can be described by 

mass random phenomena is the subject of probability theory. 

Probability theory plays an important role in everyday life in economics, 

in business, in trade on financial markets, in risk assessment and many other 

areas where statistics is applied to the real world. 

Owing to the study of probability theory a student is obliged to receive 

the basic knowledge of this part and use skills of applying the elements of 

probability theory in investigations where probability theory is applied as 

an instrument of investigation for forming economic mathematical models of 

economic processes and developments. This makes it possible for him to 

apply the acquired knowledge and skills for solving many practical problems 

of economics and business. 

 

Module 3. Probability theory and mathematical statistics 

 

Theme 24. Basic notions of probability theory 
 

24.1. A stochastic experiment. A subject of probability theory. 

A mathematical model of stochastic experiments 
 

Theory of probability is that part of mathematics that aims to provide in-

sight into phenomena that depend on chance or on uncertainty. The most 

prevalent use of the theory comes through the frequentists’ interpretation of 

probability in terms of the outcomes of repeated experiments, but probability 

is also used to provide a measure of subjective beliefs, especially as judged 

by one’s willingness to place bets. If we want to predict the chance of some-

thing happening in the future, we use probability. 

Let’s consider the fundamental concepts of probability theory. 

 An experiment is a repeatable process that gives rise to a number of  

outcomes. 
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 An outcome is something that follows as a result or consequence.  

 An event is a collection (or set) of one or more outcomes. 

 Events are sets and set notation is used to describe them. We use up-

per letters to denote events. They are denoted as A , B , C , …, 1A , 2A , …. 

 The simplest indivisible mutually exclusive outcomes of an experiment 

are called elementary events ,, 21  . 

 A sample space or a space of elementary events is called the set of 

all possible elementary outcomes of an experiment, which we denote by the 

symbol  .  

Any subset of   is called a random event A  (or simply an event A). 

Elementary events that belong to A  are said to favor A . 

An event is certain (or sure) if it always happens.  

An event is impossible if it never happens. 

Equally likely events are such events that have the equal chance to 

happen at an experiment. 

Example 24.1. The experiment (tossing a coin once) has 2 outcomes: 

head (the first outcome) and tail (the second outcome). The event A  is get-

ting "head". For this experiment the sample space is  tailhead, . 

The probability of an event is the chance that the event will occur as a 

result of an experiment. 

Where outcomes are equally likely the probability of an event is the num-

ber of outcomes in the event divided by the total number of possible out-

comes in the sample space. 

An impossible event has probability 0 and an event that is certain has 

probability 1.  

When experiments or observations are made, various outcomes are 

possible even under the same conditions.  

Probability theory deals with regularity of random outcomes of certain 

results with respect to given observations (in probability theory observations 

are also called experiments, since they have certain outcomes). Suppose, at 

least theoretically, that these experiments can be repeated arbitrarily many 

times under the same circumstances; namely, this discipline deals with the 

statistics of mass phenomena. The term stochastics is used for the mathe-

matical handling of random phenomena.  
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24.2. An algebra of random events. Probabilities in a discrete space  

of elementary events 

 

The mathematics of probability is expressed most naturally in terms of 

sets, therefore, let’s consider basic operations with events. 

The intersection BABAС   of events A  and B  is the event 

that both A and B occur. The elementary outcomes of the intersection BA   

are the elementary outcomes that simultaneously belong to A  and B . 

Example 24.2. If  3,2,1A  and  5,3,1B  are given, then 

 3,1 BAС . 

When events A and B  have no outcomes in common ( BA Ø (this 

symbol Ø is called the empty set)), they are mutually exclusive (or incom-

patible events).  

Example 24.3. If events  2,1A  and  5,3B  are given, then 

 BAС  Ø, because events A  and B  have no outcomes in common.  

When events A  and B  have common outcomes ( BA Ø), they are 

not mutually exclusive (or compatible events).  

Example 24.4. In the experiment of throwing a dice the event A  of get-

ting an odd number (  5,3,1A ) and the event B  of getting a number 

greater than 3 (  6,5,4B ) are not mutually exclusive, i.e. they are compat-

ible, because   5BA  Ø. 

The union BABAС   of events A  and B  is the event that at 

least  one  of the  events A   or B   occurs. The elementary  outcomes  of the  

union BA  are the elementary outcomes that belong to at least one of the 

events A  and B . 

Example 24.5. If events  5,4,3,2,1A  and  6,4,2B  are given, 

then  6,5,4,3,2,1 BAС . 

Two events A  and A  are said to be opposite (complementary) if they 

simultaneously satisfy the following conditions:  AA  and  AA Ø. 

The difference BABAС  \  of events A  and B  is the event that 

A occurs and B  does not occur. The elementary outcomes of the difference 

BA \  are the elementary outcomes of A  that do not belong to B . 

Example 24.6. If events  5,4,3,2,1A  and  5,3,1B  are given, 

 then  4,2\  BAС . 
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An event A  implies an event B  ( BA ) if B  occurs in each realiza-

tion of an experiment for which A  occurs.  

Example 24.7. If events  5,4,3,2,1A  and  5,3,1B  are given, 

then the event A implies the event B  or BA . 

Events A  and B  are said to be equivalent ( BA  ) if A implies B  

( BA ) and B  implies A  ( AB  ), i.e., if, for each realization of an experi-

ment, both events A  and B  occur or do not occur simultaneously. 

Example 24.8. If events  3,2,1A  and  1,2,3B  are given, then 

events A  and B  are equivalent or BA  . 

Venn diagrams are useful for visualizing the relationships among sets 

or events (fig. 24.1). 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 24.1. The intersection BA  (a), the union BA  (b)  

and the difference BA \  (c) of events A  and B  

 
The axiomatic definition of probability. Let a space of elementary 

events (a sample space)   be given and such single number  AP  (the 

probability of an event A) corresponds to each event A , that: 

1)   0AP ; 

2) for each pair of mutually exclusive events BA,  the equality 

     BPAPBAP   takes place; 

3)   1P . 

Then we say, that the probability is defined on events of  , and the 

number  AP  is called the probability of an event A  . 

Let’s suppose that  n ...,,, 21  is a finite space, where ,1  

n ...,,2  are the simplest indivisible mutually exclusive outcomes of an ex-

periment or they are called elementary events. To each elementary event 
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 nii ...,,2,1  there is a corresponding number  ip  , called the 

probability of the elementary event i . Thus a real function satisfying the fol-

lowing two conditions is defined on the space  : 

1) nonnegativity condition:   0ip   for any  nii ...,,2,1 ; 

2) normalization condition:   1
1




n

i
ip  . 

The probability  AP  of an event A  for any set A  is defined to be 

the sum of probabilities of the elementary events that form A , i.e.  

   



A

i

i

pAP


 . 

This pair (a space of elementary events   and a real function P ) thus 

defined is called a finite discrete probability space. 

 

24.3. Rules of a sum of incompatible events and a product  

of compatible events. Inclusion-exclusion principle 

 

At solving problems of probability theory one can use the following 

rules:  

1. The rule of sum is an intuitive principle stating that if there are a  

possible outcomes for an event A  (or ways to do something) and b  possible 

outcomes for another event B  (or ways to do another thing) and two events 

can’t both occur (or the two things can’t be done) ( A  and B  are mutually ex-

clusive or incompatible events) then there are ba   total possible outcomes 

for the events A  and B  (or total ways to do one of the things); formally, the 

sum of sizes of two incompatible sets is equal to the size of their union, i.e. 

BABA  . 

Example 24.9. A woman has decided to shop at one store today, either 

in the north part of town or the south part of town. If she visits the north part 

of town, she will either shop at a mall, a furniture store, or a jewelry store (3 

ways). If she visits the south part of town then she will either shop at a cloth-

ing store or a shoe store (2 ways). Let A  be the woman visiting the north part 

of town and B  be the woman visiting the south part of town, i.e. 3A  and 

2B . 
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Thus there are 523  BABA  possible shops the woman 

could end up shopping at today. 

2. The rule of product is another intuitive principle stating that if there 

are a  possible outcomes for an event A  (or ways of doing something) and b  

possible outcomes for another event B  (or ways of doing another thing) and 

two events can both occur (or the two things can be done) ( A  and B  are not 

mutually exclusive or compatible events) then there are ba   total ways of 

performing both things, i.e. BABA  . 

Example 24.10. When we decide to order pizza, we must first choose 

the type of crust: thin or deep dish (2 choices or 2A ). Next, we choose 

the topping: cheese, pepperoni, or sausage (3 choices or 3B ). Using the 

rule of product, you know that there are 632  BABA  possible 

combinations of ordering a pizza. 

3. Inclusion-exclusion principle or the rule of inclusion and exclusion: 

the inclusion-exclusion principle relates to the size of the union of multiple 

sets, the size of each set and the size of each possible intersection of the 

sets. The smallest example is when there are two sets: the number of ele-

ments in the union of the events A  and B  is equal to the sum of the ele-

ments in the events A  and B  minus the number of elements in their inter-

section, i.e. BABABA  . 

Example 24.11. 35 voters were queried about their opinions regarding 

two referendums. 14 supported referendum 1 and 26 supported referendum 

2. How many voters supported both, assuming that every voter supported ei-

ther referendum 1 or referendum 2 or both? 

Solution. Let A  be voters who supported referendum 1 and B  be vo-

ters who supported referendum 2. Then we have 35BA , 14A  and 

26B . Using the inclusion-exclusion principle we obtain: 

BABABA          or        BABABA   

352614 BA         or        5 BA . 

Recommended bibliography: [1; 2; 4; 5; 7; 10; 11]. 

 



 9 

Theme 25. A classical definition of a probability and elements  

of a combinatory analysis. Statistical and geometrical  

definitions of a probability 

 

25.1. A classical definition of a probability 
 

Let a space of elementary events   be given and this space consists 

of n  equally likely elementary outcomes (i.e. total number of outcomes) of 

the experiment, among which there are m  outcomes, favorable for 

an event A  (i.e. number of outcomes an event A  can happen), and A . 

Then the number: 

 
n

m
AP              (25.1) 

is called the probability of an event A . 

As all events have probabilities between impossible (0) and certain (1), 

then probabilities are usually written as a fraction, a decimal or sometimes as 

a percentage. In this lecture probabilities will be written as fractions or deci-

mals. 

The probability is the non-dimensional quantity. It can be measured in 

percent from 0 to 100. For example, %404.0
10

4
)( АР . 

Example 25.1. Suppose the event A  we are going to consider is rolling 

a die once and obtaining a 3. The die could land in a total of six different 

ways. We say that the total number n  of outcomes of rolling the die is six, 

which means there are six ways it could land. The number m  of ways of ob-

taining the particular outcome of A  is one.  

We can apply the formula (25.1) and find:  
6

1
AP . 

When we roll a die it has an equal chance of landing on any of the six 

numbers 1, 2, 3, 4, 5, or 6. These events are called equally likely events. 

25.2. A basic notion of a combinatorial analysis 
 

We often compose new sets, systems or sequences from the elements 

of a given set in a certain way. Depending on the way we do it, we get the no-
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tion of permutation, combination and arrangement. The basic problem of 

combinatorics is to determine how many different choices or arrangements 

are possible with the given elements (for instance, letters of an alphabet, 

books of a library, cars on a parking, etc.). 

 

25.2.1. Collection of formulas of combinatorics without repeti-

tions. A permutation without repetitions is called the number of different 

permutations of n  different elements: 

!21 nnРn    

Example 25.2. In a classroom 16 students are seated on 16 places. 

There are !1616 Р  different possible permutations. 

An arrangement without repetitions is called an ordering of k ele-

ments selected from n different ones, i.e. arrangements are combinations 

considering the order: 

 !
!

kn

n
Аk

n


 . 

Example 25.3. How many different ways are there to choose a chair-

man, his deputy, and a first and a second assistant for them from 30 partici-

pants at an election meeting? This answer is 
 

657720
!430

!304
30 


А . 

A combination without repetitions is called a choice of k  elements 

from n  different elements without considering the order of them: 

 !!

!

knk

n
С k

n


  

Example 25.4. There are 
 

27405
!430!4

!304
30




С  possibilities to 

choose an electoral board of 4 persons from 30 participants. 

Example 25.5. 7 tickets were drawn among 17 students including 8 

girls. What is the probability that there are 4 girls among ticket owners? 
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Solution. The number of possible ways of distributing 7 tickets among 

17 students is equal to the number of combinations of 17 elements taken 7 at 

a time, i.e. 
7
17

С . The number of the selection of 4 girls from 8 is 
4
8С . Each 

group of 4 can be connected with each group of 3 of 9 boys. The number of 

such groups of 3 is 
3
9

С . The number of results of distributing 7 tickets includ-

ing 4 tickets for girls and 3 for boys, is 
4
8

С ∙
3
9

С . Then the probability is: 

7
17

3
9

4
8

)(
С

СС
АP


 .  

 25.2.2. Collection of the formulas of combinatorics with repeti-

tions. If for different elements k  out of n  elements with replacement, no 

subsequent ordering is performed (i.e., each of the n  elements can occur 1, 

2, ..., or k  times in any combination), then one speaks of combinations with 

repetitions. The number 
k
nC  of all distinct combinations with repetitions of n  

elements taken k  at a time is given by the formula: 

k
kn

k
n СC

1
 . 

Example 25.6. Consider the set of elements 1, 2, 3 ( 3n ). Take 

2k  elements, there are 
 

6
!24!2

!42
4

2
123

2
3 


  CCC  combinations 

with repetitions             3,3,2,2,1,1,3,2,3,1,2,1 . 

If for different elements k  out of n  elements with replacement, the 

chosen elements are ordered in some way, then one speaks of arrange-

ments with repetitions. The number 
k
nA  of distinct arrangements with repe-

titions of n  elements taken k  at a time is given by the formula: 

kk
n nA  . 

Example 25.7. Consider the set of elements 1, 2, 3 ( 3n ). Take 

2k  elements, there are 9322

3 A  arrangements with repetitions   ,2,1  

               3,3,2,2,1,1,2,3,1,3,1,2,3,2,3,1 . 
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Let’s suppose that a set of n  elements contains k  distinct elements, of 

which the first occurs 1n  times, the second occurs 2n  times, ..., and the k -th 

occurs kn  times, nnnn k  21 . Permutations of n  elements of this 

set are called permutations with repetitions on n  elements. The number 

 kn nnnP ,,, 21   of permutations with repetitions on n  elements is given by 

the formula: 

 
!!!

!
,,,

21

21

k

kn
nnn

n
nnnP





 . 

Example 25.8. If there are two letters a  and one letter b , the number 

of permutations with repetitions out of 3 elements and composition of letters 

2, 1 equals   3
!1!2

!3
1,23 


P        aabababaa ,,,,,,,, . 

 
25.3. A geometric definition of a probability. A statistical definition  

of a probability and its properties 

  

A statistical definition of a probability of an event A . Let A  be an 

event belonging to the sample space  , i.e. A , of an experiment. If the 

event A  occurred An  times while we repeated the experiment n  times, then 

An  is called the frequency, and 
n

nA  is called the relative frequency of the 

event A . 

A geometric definition of a probability of an event A . Let   be a set 

of a positive finite measure    and consist of all measurable (i.e. having a 

measure) subsets A . The geometric probability of an event A  is de-

fined to be ratio of the measure of A  to that of  , i.e.  

 
 
 




 A
AP . 

 The notion of geometric probability is not invariant under transfor-

mations of the sample space   and depends on how the measure  A  is 
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introduced. As measures  A  and    we can use different geometric 

measures, for example, lengths, areas or volumes. 

 Example 25.9. A point is randomly thrown into a disk of radius 1R . 

Find the probability of the event that the point lands in the disk of radius 

2

1
r  centered at the same point. 

 Solution. Let A be the event that the point lands in the smaller disk. 

 We find the probability  AP  as the ratio of the area of the smaller disk 

to that of the larger disk: 

 
 

4

1

1

21
2

2

2

2

2

2


R

r

R

r
AP




. 

25.4. Different types of events. Properties of probability 
 

An event A is said to be impossible if it cannot occur for any realiza-

tion of the experiment. Obviously, the impossible event does not contain any 

elementary outcome and hence should be denoted by the symbol Ø. Its 

probability is zero, i.e.   0AP . 

Example 25.10. Let’s roll a die and obtain a score of 7 (the event A). 

It’s an impossible event, then   0AP .  

Property 1. The probability of an impossible event is 0, i.e.   0AP . 

An event A is said to be sure if it is equivalent to the space of elemen-

tary events  , i.e. A , or it happens with probability 1. 

Example 25.11. Let’s roll dice and obtain a score less than 13 (the 

event A). It’s a sure event or a space of elementary events  , because it 

consists of all possible outcomes of  . Then   1AP .  

Property 2. The probability of a sure (certain) event is 1, i.e.   1AP . 

Property 3. The probability of a space of elementary events   is 1, i.e. 

  1P . 

Property 4. All probabilities that lie between zero and one are inclusive, 

i.e. 1)(0  АР . 

The event that A  doesn’t occur is called the complement of A , or the 

complementary event, and is denoted by A . The  elementary  outcomes of 

A  are the elementary outcomes that don’t belong to the event A . 
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Property 5. The probability of the event A  opposite to the event A  is 

equal to    APAР 1 .  

From this property we can obtain that     1 APAP  for complemen-

tary events A  and A  and explain them in the next example. 

Example 25.12. Helen rolls a die once. What is the probability she rolls 

an even number or an odd number? 

Solution. The event of rolling an even number  A  and the event of roll-

ing an odd number  B  are mutually exclusive events, because they both 

cannot happen at the same time, so we add the probabilities. In addition, 

these two events make up all the possible outcomes, so they are comple-

mentary events, i.e. B  is A . Let’s write:     1
6

3

6

3
 BРAР   

The events A  and B  are called equally likely events, if    BPAP  . 

Property 6. Probabilities of equally likely events A  and B  are equal, i.e. 

   BPAP  . 

Example 25.13. When we roll a die it has an equal chance 
6

1
 of land-

ing on any of the six numbers 1, 2, 3, 4, 5, or 6. These events are called 

equally likely events. 

Property 7. Nonnegativity:   0AP  for any A . 

Property 8. For each A  the inequality   1AP  takes place. 

Property 9. If an event A  implies B , i.e. BA , then    BPAP  . 

 

25.5. Probability addition theorems 

 

The events are called compatible (mutually exclusive) if they can oc-

cur together in the same experiment.  

The events are called incompatible (not mutually exclusive) if they 

cannot occur together in the same experiment.  

Probability addition theorem for incompatible events. The probability 

of realization of at least one of two events A  and B  is given by the formula:  

)()()()( BРAРBorAРBAР  ,                    (25.2) 

where A and B  are incompatible events. 
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The probability of such events are explained in the following example. 

Example 25.14. Ann rolls a die once. a) What is the probability she rolls 

a 3 and a 6? b) What is the probability she rolls a 3 or a 6? 

Solution. a) When one die is rolled, the event A  of rolling a 3 and 

the event B  of rolling a 6 are events that cannot both happen at the same 

time, and are called mutually exclusive events. So the probability of rolling a 

3 and a 6 is impossible on one roll of a die, and equal to zero, i.e. 

0)( BandAР . 

b) The probability of rolling a 3 ( A) or a 6 ( B ) is also a mutually exclu-

sive event and is calculated by the formula (25.2): 

     
3

1

6

2

6

1

6

1
   BPAPBAP . 

Probability addition theorem for compatible events. The probability 

of realization of at least one of two events A  and B  is given by the formula  

)()()()()( BAРBРAРBorAРBAР  ,               (25.3) 

where A and B  are compatible events. 

Example 25.15. Ann rolls a die once. What is the probability she rolls 

a prime number or an odd number? 

Solution. When one die is rolled, the event A  of rolling a prime or the 

event B  of rolling an odd number are events that can both happen at the 

same time, and they are compatible events. Then the probability of A  or B  is 

calculated by the formula (25.3). 

We have  5,3,2A ,  5,3,1B  and obtain 
6

3
)( AP , 

6

3
)( BP . 

We find  5,3BA ,  
6

2
BAP  and use the formula (25.3): 

       
3

2

6

4

6

2

6

3

6

3
 BAРBРAРBAР . 

Recommended bibliography: [2; 4; 6; 7; 10; 11]. 
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Theme 26. Conditional probability and a notion of an event  

independence. Formulas of a total probability and Bayes 
 

26.1. Conditional probability and theorem of a product  

for dependent events. Theorem of a product for independent events 

 

The events are called independent if the occurrence of one of them 

does not change the probability of the occurrence of the other one. 

The events are called dependent if the probability of each of them is 

changed in connection with the occurrence or nonoccurrence of the other 

one. 

Multiplication theorem for independent events. When the outcome of 

one event has no effect on the outcome of another event, we say that the two 

events are independent events. To obtain the probability of independent 

events we multiply the probabilities of the separate events, i.e. 

       BРAРBandAРBAР  ,                      (26.1) 

where A and B  are independent events 

Example 26.1. A coin is tossed and a die is rolled. What is the probabil-

ity of obtaining a head and a prime number? 

Solution. The result of tossing a coin cannot possibly affect the outcome 

of rolling a die. In other words, if the coin landed as a head, it would not af-

fect the way the die would land. Then the outcomes are independent events. 

The probability of A  (tossing a head) is 
2

1
, i.e.  

2

1
AР , and the prob-

ability of B  (rolling a prime number with a die) is 
6

3
, i.e.  

6

3
BР , because 

there are three numbers 2, 3, and 5 that are prime. Let’s use the formu-

la (3.1):      
4

1

6

3

2

1
 BРAРBAР . 

Multiplication theorem for dependent events. If A  and B  are de-

pendent events, then: 

           BAРBРABРAРBandAРBAР  ,     (26.2) 

where  ABР  or  BРA  is called the conditional probability of the event B   
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given the event A  (it means the probability that the event B  will occur given 

that the event A  has already occurred) and  BAР  is the conditional pro-

bability of the event A  given the event B .  

 Example 26.2. There are 3 nonstandard electric bulbs among 50 elec-

tric ones. What is the probability that 2 electric bulbs taken at a time are non-

standard? 

 Solution. The probability of the event A  that the first bulb is nonstand-

ard equals 
50

3
. The probability of the second bulb is nonstandard (the event 

B ) on conditions that the first bulb is nonstandard (the event A) equals 
49

2
, 

because the total number of bulbs and the number of nonstandard bulbs de-

creased by 1.  

According to the formula (26.2) we have  

      0024.0
49

2

50

3
 ABРAРBAР . 

Two random events A  and B  are said to be independent if the condi-

tional probability of A  given B  coincides with the unconditional probability of 

A, i.e.   )(AРBAР  . 

A conditional probability from the formula (26.2) is expressed as: 

   
 AР

BAР
ABР


 .                                    (26.3) 

Example 26.3. The probability that it is Friday and that a student is ab-

sent is 0.03. Since there are 5 school days in a week, the probability that it is 

Friday is 0.2. What is the probability that a student is absent given that today 

is Friday? 

Solution. Let’s denote that it is Friday as the event A  and a student is 

absent as the event B . Then the event that a student is absent given that to-

day is Friday is denoted by AB . Let’s find  ABP  using the formula (26.3): 

   
 

15.0
2.0

03.0





AР

BAР
ABР . 

javascript:x1096653463('conditional')
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26.2. A complete group of events 

 

Events nAAA ,,, 21   are called pairwise independent if every possi-

ble pair of these events is independent, i.e.      jiji APAPAAP   for 

any ji,  ( ji  ). 

One says that events nAAA ,,, 21   form a complete group of pair-

wise incompatible events (or mutually exclusive), if exactly one of them nec-

essarily occurs for each realization of the experiment and no other event can 

occur. 

If events nAAA ,,, 21   form a complete group of pairwise incompati-

ble events, then       121  nAPAPAP  . 

 For example, two opposite events A  and A  form a complete group of 

incompatible events. 

Example 26.4. Let the probability that the shooter scores 10 points, 

when hitting the target, equals 0.4, 9 points – 0.2, 8 points – 0.2, 7 points – 

0.1, 6 points and less – 0.1. What is the probability that the shooter scores no 

less then 9 points by one shot? 

Solution. Let 1A  be the shooter scoring 10 points, 2A  be the shooter 

scoring 9 points, 3A  be the shooter scoring 8 points, 4A  be the shooter scor-

ing 7 points, 5A  be the shooter scoring 6 points and less. 

These events form the complete group of pairwise incompatible events, 

i.e.           154321  APAPAPAPAP . 

Let C  be the shooter scoring no less then 9 points by one short. 

The required event will occur (mark it C ) if the shooter scores either 9 

(the event 2A ) or 10 points (the event 1A ). The events 2A  and 1A  are in-

compatible. Thus,       6.04.02.021  APAPCP . 

26.3. A notion of a pairwise independence of random events.  

An independence in a totality 

 

A pairwise independent collection of events nAAA ,,, 21   is called 

a set of events any two of which are independent.  

Any collection of mutually independent events is pairwise independent. 



 19 

Let events nAAA ,,, 21   be independent, A  is at least one of n  

events occurs in the experiment. Then A  is this event that no one of n  

events occurs in the experiment, i.e. nAAAA  21 . The events A  and 

A  form a complete group of incompatible events, therefore,  

         nAPAPAPAPAP  2111 .   (26.4) 

This formula (26.4) is called the probability that at least one of n  

events occurs. 

Let’s denote   11 pAP  ,   111 1 qpAP  , …,   nn pAP  , 

  nnn qpAP 1  and transform the formula (26.4): 

        nn qqqAPAPAPAP   2121 11 .   (26.5) 

 Example 26.5. Three students are going to take the exam. The pro-

bability that the first student passes it equals 0.9, the second one is 0.75, 

the third one is 0.6. What is the probability that at least one of three students 

passes the exam? 

Solution. Let 1A  be the event that the first student passes the exam, 

2A  be the event that the second student passes the exam, 3A  be the event 

that the third one does it. 

Each student can pass the exam or not. Then   9.011  pAP , 

  1.01 111  qpAP ,   75.022  pAP ,   25.01 222  qpAP ,  

  6.033  pAP ,   4.01 333  qpAP . 

Events 321 ,, AAA  are independent. If the event A  is at least one of 

three students passes the exam, then the complementary event A  (not A) is 

no student passes the exam (it means 321 AAA  ). 

Let’s use the formula (26.5) and obtain: 

  99.001.014.025.01.011 321  qqqAP . 

If all events nAAA ,,, 21   have equal probability, i.e.     21 APAP  

  pAP n  , then       qpAPAPAP n  121   and from the  
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formula (26.5) we have:  

  nqAP 1 .     (26.6) 

Let’s define the necessary number of trials (n ) with the given reliability 

P  no less than  AP , i.e.   PAP  , using the formula (26.6): 

  PqAP n 1     or      Pp
n
 11  

or 

  Pp
n

 11 . 

Let’s take a natural logarithm of both parts of this inequality: 

   Ppn  1ln1ln . 

 Hence 

 
 p

P
n






1ln

1ln
. 

26.4. The formula of a total probability 

 

Let’s suppose that a complete group of pairwise incompatible events 

nHHH ,,, 21   is given and the unconditional probabilities    ,, 21 HPHP  

 nHP, , as well as the conditional probabilities     ,,, 21 HAPHAP  

 nHAP  of an event A , are known. Then the probability of A  can be deter-

mined by the total probability formula 

     



n

k
ii HAPHPAP

1

.    (26.7) 

Each of the events nHHH ,,, 21   is called hypothesis.  

 iHP  is called a priori probability (premature probability). 

Example 26.6. Three machines produce the same type of product in 

a factory. The first one gives 200 articles, the second one does 300 articles 

and the third one does 500 articles. It is known that the first machine produc-
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es 1 % of defective articles, the second one does 2 %, the third one does 

4 %. What is the probability that an article selected randomly from the total 

production will be defective? 

Solution. Let A be the event that the chosen article is defective.  

Let’s consider the following complete group of events (hypotheses): 1H  

denotes the event that the randomly selected article is made by the first ma-

chine, 2H  denotes the event that the randomly selected article is made by 

the second machine, 3H  denotes the event that the randomly selected arti-

cle is made by the third machine.  

Let’s find their probabilities:   2.0
1000

200

500300200

200
1 


HP , 

  3.0
1000

300
2 HP ,   5.0

1000

500
3 HP . 

Since events 1H , 2H  and 3H  form the complete group, then 

      15.03.02.0321  HPHPHP . 

Let’s define conditional probabilities      321 ,, HAPHAPHAP :  

  01.01 HAP ,   02.02 HAP ,   04.03 HAP . 

Here 1HA  is a defective article produced by the first machine, 2HA  is 

a defective article produced by the second machine, 3HA  is a defective arti-

cle produced by the third machine. 

Let’s use the total probability formula (26.7) and find: 

              332211 HAPHPHAPHPHAPHPAP  

028.004.05.002.03.001.02.0  . 

 We have 2.8 % of defective articles from the total production. 

 

26.5. Bayes' formula 

 

If it is known that the event A  has occurred but it is unknown which of 

the events nHHH ,,, 21   has occurred, then Bayes' formula is used: 
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 
   

 AP

HAPHP
AHP kk

k


 , nk ,,2,1     (26.8) 

and       121  AHPAHPAHP n . 

where  AHP i  is called a posteriori probability (final probability). 

Example 26.7. Let’s use the condition of example 26.6 and solve the 

following problem. It is known that a selected article is defective. What is the 

probability that this article was made by the second machine? 

Solution. The desired probability of the event AH2  (the selected article 

was made by the second machine under condition that it is known that it is 

defective) is determined by Bayes' formula (26.8):  

 
   

  14

3

28

6

028.0

02.03.022
2 







AP

HAPHP
AHP . 

Recommended bibliography: [2; 5; 6; 7; 10; 11]. 

 

Theme 27. A model of repeated trials of Bernoulli’s scheme. 

Theorems of de Moivre–Laplace and Poisson as investigations 

of an asymptotic behavior of binomial distribution 

 

27.1. Repeated independent trials. Bernoulli’s scheme. A distribution  

of a number of successes in a set of independent stochastic  

experiments. A binomial distribution 

 

Trials in which events occurring in distinct trials are independent are 

said to be independent. Here the probability of each event A  of the form  

nAAAA  21  is defined as        nAPAPAPAP  21 . 

Let independent events occur in n  independent trials. In each trial the  

event A  can occur on can’t occur. 

A sequence of n  independent trials is also called a Bernoulli scheme.  

In this case, some event A  occurs with probability  APp   (the prob-

ability  of  "success")  and  does  not  occur  with  probability     1APq   
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  pAP  1  (the probability of "failure") in each trial.  

If k  is the number of occurrences of the event A  (the number of "suc-

cesses") in n  independent Bernoulli trials, then the probability that A  occurs 

exactly k  times is given by the formula: 

    knkk
nn qpCkPkP  ,                                 (27.1) 

where 
 !!

!

knk

n
Сk

n


  is a combination of n  things taken k  at a time.  

This relation is called the Bernoulli formula (binomial distribution).  

The probability that the event occurs at least m  times in n  independent 

trials is calculated by the formula: 










 
1

0

1)(
m

k

knkk
n

n

mk

knkk
nn qpCqpCmkP . 

The probability that the event occurs at least once in n  independent tri-

als is calculated by the formula: 

n
n qkP  1)1( . 

The probability that the event A  occurs no less than 1k  and no more 

than 2k  times ( 21 kk  ) satisfies the relation: 

        21121 ...1 kPkPkPkkkP nnnn  

222111 ...
knkk

n
knkk

n qpCqpC


 . 

Example 27.1. The probability of a train’s arrival at a station on time is 

equal to 0.8. What is the probability that out of 4 expecting trains 2 trains will 

arrive on time? 

Solution. Let A be a train arriving at a station on time,   8.0 pAP .  

Then A  is a train that doesn’t arrive at a station on time and 

    2.08.011  APAPq . Here 304 n , 2k .  

According to Bernoulli formula (27.1) we have 
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 
 

1536.004.064.062.08.0
!24!2

!4
2.08.02 222422

44 


 СP . 

27.2. The most probable number of successes and its probability 

 

 The number 0k of occurrences of the event A  in the independent trials 

is called the most probable number if the probability of the event occuring 

such number 0k  times is maximum (the largest value).  

Let the event A  occur with probability  APp   and do not occur with 

probability     pAPAPq  11  in the trial. Then the most probable 

number 0k  is defined by inequality: 

pnpkqnp  0 ,       (27.2) 

where 0k  is a whole number.  

 Example 27.2. The probability of finding a mistake on a book page is 

equal to 0.002. 500 pages are checked. Find the most probable number of 

pages with mistakes. 

Solution. Let A be finding a mistake on a book page,   002.0 pAP . 

Then A  is lack of a mistake on a book page and 

    998.0002.011  APAPq .  

According to (27.2) we have 

002.0002.0500998.0002.0500 0  k  

or 

002.01998.01 0  k  

or  

002.1002.0 0  k . 

 Then 10 k . 

27.3. Approximate methods of calculating binomial probabilities  

and their accuracy. Limit theorems for Bernoulli process 

 

It is very difficult to use Bernoulli's formula for large n  and k . In this  
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case, one has to use approximate formulas for calculating )(kPn  with desired 

accuracy. 

27.3.1. Local theorem of de Moivre–Laplace. Suppose that the num-

ber of independent trials increases unboundedly ( n  or n  approaches 

infinity) and the probability constp  , 10  p , then the probability  kPn  

that A  occurs exactly k  times out of n  satisfies the limit relation 

  








 


npq

npk

npq
kPn 

1
,                                  (27.3) 

where the limit expression  x  is Laplace differential function or the proba-

bility density of the standard normal distribution, i.e.   2

2

2

1
x

ex





 . 

This function is even, i.e.    xx   .  

The function value ( 4x ) is defined by Laplace differential function ta-

ble (table 1, appendix A). For the values 4x    0x . 

Example 27.3. The probability of the birth of a boy is equal to 0.51. 

Find the probability that among 200 newborns there will be the same number 

of boys and girls.  

Solution. Let A be the birth of a boy,   51.0 pAP . Then A  is the 

birth of a girl and     49.051.011  APAP . Here 200n , 100k .  

According to the local theorem of de Moivre–Laplace (27.3) we have 

 
07.7

28.0

49.051.0200

51.0200100

49.051.0200

1
)100(200




















P . 

The function  x  is even, then we obtain    28.028.0   . Let’s 

apply Laplace differential function table (appendix A) and have 

  3836.028.0  . Let’s substitute this value into the previous formula and  

obtain: 

   
0543.0

07.7

3836.0

07.7

28.0

07.7

28.0
)100(200 





P . 
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27.3.2. Integral theorem of de Moivre-Laplace. Let’s suppose that 

n  and the probability constp  , 10  p , then the probability )(kPn  

that A  occurs no less than 1k  and no more than 2k  times ( 21 kk  ) satisfies 

the limit relation: 

  








 










 


npq

npk

npq

npk
kkkPn

12
21 ,                        (27.4) 

where the limit expression  x  is Laplace integral function or the cumulative 

distribution function of the standard normal distribution, i.e.: 

  dxex
x x





0

2

2

2

1


. 

This function is odd, i.e.    xx  .  

The function value ( 4x ) is defined by Laplace integral function table 

(table 2, appendix B). For values 4x    5.0 x . 

Example 27.4. The probability of the birth of a girl is equal to 0.49. Find 

the probability that among 200 newborns there will be from 95 to 110 girls.  

Solution. Let A  be the birth of a girl,   49.0 pAP . Then A  is the 

birth of a boy and     51.049.011  APAPq .  

Here 200n , 951 k , 1102 k . 

According to integral theorem of de Moivre–Laplace (27.4) we have 




























51.049.0200

49.020095

51.049.0200

49.0200110
)11095(200 kP  

   42.070.1
07.7

3

07.7

12








 









 . 

The function  x  is odd, then    42.042.0  . Let’s apply La-

place integral function table (appendix B) and have   4554.070.1   and 

  1628.042.0  . Let’s substitute these values into the previous formula 

and obtain: 
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6182.01628.04554.0)11095(200  kP . 

27.3.3. Poisson theorem. If the number of independent trials increases 

unboundedly ( n ) and the probability p  simultaneously decays ( 0p ) 

so that their product np  is a constant ( constnp   ), then the probability 

)(kPn  satisfies the limit relation: 

  e
k

kP
k

n
!

)( .                                       (27.5) 

The probability that the event A  occurs no less than 1k  and no more 

than 2k  times ( 21 kk  ) satisfies the relation: 

            e
k

e
k

kPkPkPkkkP
kk

nnnn
!

...
!

...1
21

21121

21

. 

Example 27.5. The probability of finding a mistake on a book page is 

equal to 0.002. 1000 pages are checked. Find the probability that there is a 

mistake on 3 pages. 

Solution. Let A  be finding a mistake on a book page,    pAP  

002.0 . Then A  is lack of a mistake on a book page and   APq  

  998.0002.011  AP . Here 1000n , 3k . Then 1000  

2002.0  .  

According to Poisson formula (27.5) we have: 

  1802.072.2
6

8

!3

2

!3
)3(

22
33

1000 
 eeP 

. 

27.4. Probability of deviation of relative frequency from the probability 

 

Let some event A  occur with probability  APp  , 10  p  and don’t  

occur with probability     pAPAPq  11  in each of n  independent 

trials.  

 It is necessary to define the probability of deviation of relative frequency  
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from the constant probability, i.e. find the probability of inequality  p
n

m
. 

Then the probability of an absolute value of deviation of relative frequency 

from its constant probability less than or equal to   equals 









pq

n
2 , i.e.: 




















pq

n
p

n

m
P  2 , 

where 
n

m
 is a relative frequency, p  is the constant probability of A , n  is the 

number of trials,   is an accuracy;  x  is Laplace integral function (appen-

dix B). 

 Example 27.6. For defining the level of students’ knowledge in 

the given subject 100 students are given tests. The probability of carrying out 

a test excellently is 0.1. Find 

a)  the probability P  that the relative frequency deviates from the pro-

bability p  by the value 01.0 ; 

b)  the accuracy  , which probability of deviation of relative frequency 

from the probability p  is 95.0P ;  

c)  how many students it is necessary to take that with the accuracy 

02.0  the probability of deviation of relative frequency from the probability 

p  will be 9.0P .  

Solution. a) Let’s find 







 p

n

m
P . If 1.0p , then  pq 1  

9.01.01  . Let’s substitute: 

  2586.01293.0233.02
9.01.0

100
01.0201.01.0 





















n

m
P . 

b) According to the condition 95.0







 p

n

m
P . Let’s find  . 

Then 95.02 









pq

n
  or 2/95.0










pq

n
  or 










pq

n
   
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475.0  (appendix B) or  96.1









pq

n
  or 96.1

pq

n
 . 

Let’s substitute: 06.00588.0
100

9.01.0
96.196.1 




n

pq
 . 

c) According to the condition 9.0







 p

n

m
P  and 02.0 . Let’s 

find n . Then 


















pq

n
p

n

m
P  29.0 . Thus 65.1

pq

n
 .  

Let’s substitute:  

65.1
9.01.0

02.0 


n
 or .6131.612

02.0

9.01.065.1
2

2




n  

 Thus, it is necessary to take 613 students. 

Recommended bibliography: [5; 6; 7; 10; 12]. 

 

Theme 28. Discrete random variables, their distribution laws  

and numerical characteristics 

 

28.1. A definition of random variables and their classification 

 

A variable is called random, if it can receive real values with definite 

probabilities as a result of experiment.  

In general, random variables can be discrete or continuous. 

The random variable X  is called discrete, if such non-negative func- 

tion exists   ii pxXP  , ni ,1 , 



n

i
ip

1

1, which determines the corre-

spondence between the value ix  of the variable X  and the probability ip , 

that X  receives this value.  

A random variable is denoted by X , Y , Z  and so on and its possible 

values are denoted by ix , iy , iz   For example, if X  is a random variable, 

then its values are nxxx ,,, 21   (these values form a complete group of 

events, therefore 



n

i
ip

1

1). 
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Discrete random variables X  and Y  are called independent random 

variables, if the events ixX   and iyY   are independent for arbitrary i  

and j .  

 

28.2. The distribution law of a discrete random variable 

 

The distribution law (row) of a discrete random variable is called a set 

of all its possible values and probabilities which these values possess. It’s of-

ten written in the form of a table 

 

ix  1x  2x  … 
nx  

ip  1p  2p  … 
np  

  

 Example 28.1. Two balls are drawn in succession without replacement 

from an urn containing 4 red balls and 3 black balls. The possible outcomes 

and the values iх  of the random variable X , where X  is the number of red 

balls, are: 

 

Sample space 
ix  

RR 2 

RB 1 

BR 1 

BB 0 

Let’s find the probability of each value ix :      
7

1
0  BBPXP ,    

   
7

4

7

2

7

2
1  BRRBPXP ,                

7

2
2  RRPXP . 

Let’s write the distribution law of this discrete random variable: 

 

ix  0 1 2 

ip  
7

1
 

7

4
 

7

2
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Distribution law (row) can be graphically plotted (fig. 5.1). Values of a 

variable ix  are marked on X -axis, the corresponding probabilities ip  are 

marked on Y -axis. The obtained points are connected with the help of seg-

ments. It results in a distribution polygon. 

Example 28.2. Distribution law of a discrete random variable X  

  

ix  -2 2 6 10 14 

ip  0.05 0.16 0.35 0.31 0.13 

 

is given. Draw a distribution polygon. 

Solution. Let’s plot the distribution polygon for the given distribution law 

(fig. 28.2). 

 

0

x

p
n

p
n-1

p
1

p
2

p
3

x
1

x
2 x

3
x

n
x

n-1

p
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0.2
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0.4

-2
-2

p

x

10 12 14

 

Fig. 28.1. A distribution polygon Fig. 28.2. The distribution polygon 

 

28.3. The numerical characteristics of distribution 

 

The mathematical expectation of a discrete random variable X  is 

called a sum of products of possible values ix , which a variable X  is taken, 

and their corresponding probabilities ip .  

nn

n

i
ii pxpxpxpxXM 



...)( 2211
1

.   (28.1) 

For existence of the expectation (28.1), it is necessary that the corre-

sponding series converge absolutely.  



 32 

The expectation is the main characteristic defining the "position" of 

a random, i.e. the number near which its possible values are concentrated. 

General properties of a mathematical expectation: 

1. )()( XMссXM  , Rс ;  

2. )()()( YMXMYXM  , where X , Y  are the discrete random 

variables; 

3. )()()( YMXMYXM   for independent random variables X  

and Y .  

4.    XMХM    for any real  . 

5.      YMXMYХM    for any real   and  . 

6.      YMXMYХM  . 

7.      YMXMYХM    for any real   and  . 

 The variance of a random variable X  is called a mathematical expec-

tation of deviation square of a random variable from its mathematical expec-

tation, i.e.: 

     i

n

i
i pXMxXMXMXD  

1

22
)()()(   (28.2) 

or variance of a random variable X  equals a mathematical expectation of its 

square minus a square of its mathematical expectation, i.e.: 

 22 )()()( XMXMXD  ,   (28.3) 

where                                   i

n

i
i pxXM 

1

22 )( .                                 (28.4) 

Properties of a variance: 

1.   0СD  for any real С . 

2. The variance is nonnegative:   0ХD . 

3.    XDХD  2  for any real   and  . 

4.    XDХD  2  for any real  . 

5.      YDXDYХD   for independent random variables X  

and Y .  
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6.      YDXDYХD  . 

7.              XMYDYMXDYDXDYХD 22  . 

Root-mean-square deviation (or standard deviation) of a random 

variable X  is the square root of its variance, i.e.:  

)()( XDX  .    (28.5) 

 A mode of a discrete random variable oM  is a value preceded and fol-

lowed by values associated with probabilities smaller  oMP .  

A median of a discrete random variable eM  is the "middle" value. It is 

the value of X  for which  xXP   is greater than or equal to 0.5 and 

 xXP   is greater than or equal to 0.5.  

The expectation   k
aXM   is called the k -th moment of a discrete 

random variable X  about a . The moments about zero are usually referred to 

simply as the moments of a random variable and sometimes they are called 

initial moments. The k -th moment satisfies the relation: 





n

i
i

k
ik px

1

 . 

 If  XMa   then k -th moment of the random variable X  about a  is 

called the k -th central moment. It satisfies the relation: 

  



n

i
i

k
ik pXMx

1

 . 

Example 28.3. Distribution law of a discrete random variable X : 

 

ix
 -2 2 6 10 14 

ip
 0.05 0.16 0.35 0.31 0.13 

 

is given. Find numerical characteristics of a discrete random variable X . 

Solution. A. Let’s calculate )(XM  by the formula (28.1): 
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 


5544332211

5

1

)( pxpxpxpxpxpxXM
i

ii  

 13.01431.01035.0616.0205.02  

24.782.11.31.232.01.0  . 

B. Let’s calculate )(XD  by the formulas (28.2) and (28.3), using (28.4): 

1)       


16.024.7205.024.72)()(
22

5

1

2
i

i
i pXMxXD  

      5024.1713.024.71431.024.71035.024.76
222

 ; 

2)  5
2

54
2

43
2

32
2

21
2

1
2 )( pxpxpxpxpxXM  

92.6913.01431.0103.0616.0205.0)2( 22222  , 

5024.1724.792.69)( 2 XD . 

C. Let’s calculate )(X  by the formula (28.5): 

1836.45024.17)()(  XDX . 

28.4. The distribution function 

 

The probability of the fact that a random variable X  receives a value 

less than x , is called a distribution function of a random variable X  and is 

marked as  xF : 

   xXPxF  . 

General properties of the cumulative distribution function: 

1.  xF  is a bounded function, i.e.   10  xF . 

2.  xF  is a non-decreasing function for   ,x , i.e. if 12 xx  ,  
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then    12 xFxF  . 

3.     0lim 


FxF
x

. 

4.     1lim 


FxF
x

. 

5.  xF  is left continuous; i.e.  

   0
00

lim xFxF
xx




. 

6. The probability that a random variable X  lies in the interval  21, xx  is 

equal to the increment of its cumulative distribution function on this interval, i.e. 

     1221 xFxFxXxP  . 

 Example 28.4. Find the distribution function of the random variable X , 

which is defined by the distribution law: 

 

ix  1 2 3 4 

ip  0.7 0.21 0.063 0.027 

 

Find the probability that the random variable X  possesses a value less than 

1 and more than 4. 

 Solution. A random variable X  doesn’t possess the values less than 1, 

thus for 1x  events xX   are impossible and   0xF .  

 If 21  x , then   7.0xF , because X  can possess only the value 

1x  with the probability 7.0p . 

 If 32  x , then   91.021.07.0 xF , because X  can possess 

only the values 1x or 2x  with the probability 7.0p  and 21.0p  (ad- 

dition theorem for independent events). 

If 43  x , then   973.0063.021.07.0 xF , because X  can 

possess only the values 1x , 2x  or 3x  with the probability 7.0p , 

21.0p  and 063.0p  (addition theorem for independent events). 

If 4x , then   1xF , because the event 4X  is reliable and its 

probability equals 1. 

 The required integral function is defined by the formula: 
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 


























4,1

43,973.0

32,91.0

21,7.0

1,0

xif

xif

xif

xif

xif

xF . 

A graph of integral function will be of the form: 

 

 

Fig. 28.3. The graph of integral function 

 

Let’s find the probability that a random variable X  possesses a value 

less than 1 and more than 4, i.e.  41  XP : 

      973.00973.01441  FFXP .  

28.5. Numerical characteristics of an arithmetic average, a totality  

of random variables. Properties of numerical characteristics 

 

Let nXXX ,,, 21   and      nXMXMXM ,,, 21   be random vari-

ables and their mathematical expectations, respectively.  

Let X  be a random variable which equals 
n

XXX
X n


21  (it 

is the arithmetic average). 

According to properties of a mathematical expectation we obtain: 

 
     

n

XMXMXM
XM n


21 , 
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i.e. the mathematical expectation of the arithmetic average of n  random 

variables equals the arithmetic average of their mathematical expectations. 

Let      nXDXDXD ,,, 21   be variances of these random variables 

and        DXDXDXD n ,,,max 21  . 

According to the condition   DXD 1 ,   DXD 2 , …,   DXD n   

we obtain: 

 
     

n

D

n

Dn

n

XDXDXD
XD n 







22
21 

, 

i.e. the variance of the arithmetic average of n  random variables whose vari-

ances are bounded is n  times less than the maximum of variances. 

 If random variables nXXX ,,, 21   are identical distributed, i.e. 

      aXMXMXM n  21 ,       DXDXDXD n  21 , 

then:  

  a
n

an
XM 


 ,          

n

D

n

Dn
XM 




2
, 

i.e. the mathematical expectation of n  identical distributed random variables 

equals their common mathematical expectation and the variance is n  times 

less than the common variance. 

 Hence we have:  

 
n

X


  , 

i.e. the root-mean-square deviation of the arithmetic average of n  identical 

distributed random variables equals 
n


, where ( D ). 

28.6. Basic laws of discrete random distributions  

and their characteristics 

 

28.6.1. Binomial distribution law. A random variable X  has the bi-

nomial distribution with parameters  pn,  (fig. 28.5) if 

  knkk
nn qpСkxP  , nk ...,,1,0 ,   (28.6) 
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where 10  p , pq 1 , 1n .  

The numerical characteristics are given by the formulas: 

npXM )( ,                                             (28.7) 

npqXD )( ,                                             (28.8) 

                                     npqX )( .                                          (28.9) 

Binomial distribution law of a discrete random variable is often written in 

the form of a table: 
 

ix  0 1 … 1n  n  

ip  nq  
11 n

n pqС  … qpС nn
n

11 
 

np  

 

 The binomial distribution is a model of random experiments consisting 

of n  independent identical Bernoulli trials.  

 Example 28.5. The probability of passing an exam excellently for each 

of three students equals 0.4. Make up a distribution law of a number of excel-

lent marks which are got by the students at the exam. Find a mathematical 

expectation, a variance and a root-mean square deviation of a discrete ran-

dom variable.  

 Solution. Let a discrete random variable X  be a number of students 

with the mark "5" (a 5-point system). It has such possible values: 

01 x  (no student passed the exam with the mark "5"); 

12 x  (one student passed the exam with the mark "5"); 

23 x  (two students passed the exam with the mark "5"); 

34 x  (three students passed the exam with the mark "5"). 

Students passing an exam with the mark "5" are independent events. 

The probabilities of passing an exam of each student are equal, then we use 

Bernoulli’s formula (28.6). According to the condition we have: 3n , 

4.0p , 6.01  pq .  

 Let’s find: 

01 x ,   216.06.0110 330300
33   qqpСP ; 

12 x ,   432.06.04.0331 221311
33   qpqpСP ; 
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23 x ,   288.06.04.0332 222322
33   qpqpСP ; 

34 x ,   064.014.0113 3033333
33   qpqpСP . 

 The distribution law of the discrete random variable X  is defined by 

the table: 

 

ix  0 1 2 3 

ip  0.216 0.432 0.288 0.064 

 

According to the formulas (28.7) – (28.9) for numerical characteristics 

we obtain: 

2.14.03)(  npXM ;               72.06.04.03)(  npqXD ; 

85.072.0)(  npqX . 

28.6.2. Geometric distribution law. A random variable X  has a geo-

metric distribution with parameters p  (fig. 28.6) if: 

  k
n pqkxP  , ...,2,1,0k  

where 10  p , pq 1 , 1n .  

The numerical characteristics can be calculated by the formulas: 

p

q

p

p
XM 




1
)( ,   

22

1
)(

p

q

p

p
XD 


 ,   

2
)(

p

q
X  . 

  

Fig. 28.5. Binomial distribution law 

for 550.p , 6n  

Fig. 28.6. Geometric distribution 

law for 550.p , 6n  



 40 

 The geometric distribution describes a random variable X  equal to 

the number of failures before the first success in a sequence of Bernoulli tri-

als with probability p  of success in each trial. 
 

 28.6.3. Hypergeometric distribution law. A random variable X  has 

the hypergeometric distribution with parameters  npN ,,  (fig. 28.7) if: 

 
n
N

kn
Nq

k
Np

n
C

CC
kxP



 , nk ...,,1,0 , 

where 10  p , pq 1 , Nn 0 , 0N .  

If Nn   (in practice, Nn 1,0 ), then: 
knkk

nn
N

kn
Nq

k
Np

qpC
C

CC 


 , 

i.e., the hypergeometric distribution tends to the binomial distribution. 

The numerical characteristics are given by the formulas: 

npXM )( ,   npq
N

nN
XD

1
)(




 ,   npq

N

nN
X

1
)(




 . 

 A typical scheme in which the hypergeometric distribution arises is as 

follows: n  elements are randomly drawn without replacement from a popula-

tion of N  elements containing exactly Np  elements of type I and Nq  ele-

ments of type II. The number of elements of type I in the sample is described 

by the hypergeometric distribution. 
 

28.6.4. Poisson distribution law. A random variable X  has the Pois-

son distribution with parameters    0  (fig. 28.8) if: 

 
!k

e
kxP

k

n

 

 , ...,2,1,0k ,         (28.10) 

where np , kk  ...21! . 

Poisson distribution law with parameter   of a discrete random variable 

is often written in the form of a table: 
 

ix  0 1 2 … n  

ip  e  
 e  

!2

2  e
 … 

!n

en  

 



 41 

Poisson distribution can be obtained as a limit of a binomial distribution 

if n  goes to    n  and p  goes to 0  0p  (in this case 

11  pq ). 

 

  

Fig. 28.7. Hypergeometric  

distribution law  

for 50.p , 10N , 4n  

Fig. 28.8. Poisson distribution 

law for 2  

  

The numerical characteristics can be calculated by the formulas:  

 npXM )( ,                                          (28.11) 

 npqXD )( ,                                         (28.12) 

  npqX )( .                                      (28.13) 

The Poisson distribution is the limit distribution for many discrete distri- 

butions such as the hypergeometric distribution, the binomial distribution, dis-

tributions arising in problems of arrangement of particles in cells, etc. The 

Poisson distribution is an acceptable model for describing the random num-

ber of occurrences of certain events on a given time interval in a given do-

main in space. 

Example 28.6. The probability of finding a mistake on a book page is 

equal to 0.004. 500 pages are checked. Make up a distribution law of a num-

ber of finding a mistake on a book page. Find a mathematical expectation, a 

variance and a root-mean square deviation of a discrete random variable.  

Solution. Let X  be a number of finding a mistake on a book page, then 

the possible values of X  are 0, 1, 2, 3, …, 500. Here 004.0p , 500n , 

then 2004.0500  . Let’s make up the distribution law of X  according 

to Poisson formula (28.10):  
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  13534.0
!0

2
0

20

500 



e

xP ,     27067.0
!1

2
1

21

500 



e

xP , 

  27067.0
!2

2
2

22

500 



e

xP ,     18045.0
!3

2
3

23

500 



e

xP , 

  09022.0
!4

2
4

24

500 



e

xP ,     03609.0
!5

2
5

25

500 



e

xP , 

  01203.0
!6

2
6

26

500 



e

xP ,     00344.0
!7

2
7

27

500 



e

xP , 

  00086.0
!8

2
8

28

500 



e

xP ,     00019.0
!9

2
9

29

500 



e

xP , 

  00004.0
!10

2
10

210

500 



e

xP  and so on.  

At 11k  we have that   011500 xP .  

Let’s calculate the total sum of probabilities: 



500

1

199999.0
i

ip . 

Let’s find the numerical characteristics by the formulas (28.11) – 

(28.13): 

2)(  XM ;     2)(  XD ;     41421.02)(   X . 

So, the distribution law has the form: 

 

ix  0 1 2 3 4 5 

ip  0.13534 0.27067 0.27067 0.18045 0.09022 0.03609 

ix  6 7 8 9 10 … 

ip  0.01203 0.00344 0.00086 0.00019 0.00004 … 

 

28.6.5. Negative binomial distribution law. A random variable X  has  
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the negative binomial distribution  pr,  (fig. 28.9) if: 

   krr
krn ppCkxP  
 11
1 , rk ...,,1,0 , 

where 10  p , 0r .  

 

 

Fig. 28.9. Negative binomial distribution law for 80.p , 6n  

 

The numerical characteristics can be calculated by the formulas:  

 
p

pr
XM




1
)( ;  

 
2

1
)(

p

pr
XD


 ; 

 
p

pr
X




1
)( . 

 The negative binomial distribution describes the number X  of failures  

before the r -th success in a Bernoulli with probability p  of success on each 

trail.  

For 1r , the negative binomial distribution coincides with the geomet-

ric distribution.  

Recommended bibliography: [2; 6; 8; 11]. 

 

Theme 29. Continuous and absolutely continuous random  

variables. Function and density of distribution  

of probabilities. Numerical characteristics 

 

29.1. A definition of continuous random variables. A distribution  

function of probabilities of random variables and its properties 

 

A continuous random variable is a random variable where the data 

can take infinitely many values on some numerical interval or a random vari-
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able which takes an infinite number of possible values. Continuous random 

variables are usually measurements.  

Examples include height, weight, the amount of sugar in an orange, the 

time required to run a mile.  

A continuous random variable is characterized by two functions:  

1) a distribution function (the integral distribution function)  xF ; 

2) a density function (the differential distribution function)  xf . 

The probability of the fact that a random variable X  receives a value 

less than x , is called a cumulative distribution function of a random varia-

ble X  and is marked as  xF : 

   xXPxF  . 

 General properties of the integral distribution function: 

1.  xF  is a bounded function, i.e.   10  xF . 

2.  xF  is a non-decreasing function for   ,x , i.e. if 12 xx  , 

then    12 xFxF  . 

3.     0lim 


FxF
x

. 

4.     1lim 


FxF
x

. 

5. The probability that a random variable X  lies in the interval  21, xx  

is equal to the increment of its cumulative distribution function on this interval; 

i.e.      1221 xFxFxXxP  . 

6. For continuous random variables:  

       21212121 xXxPxXxPxXxPxXxP  . 

29.2. Absolutely continuous random variables. A distribution density  

of function of absolutely continuous random variables 

 

The random variable X  is called a continuous random variable, if for 

any numbers ba   such non-negative function  xf  exists, that: 

   
b

a

dxxfbXaP . 
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The random variable X  is called an absolutely continuous random 

variable, if there is a non-negative function  xf  on R  that: 

   



x

dttfxXP , for every   ,x . 

 The term a continuous random variable is a synonym of an absolutely 

continuous random variable. 

An absolutely continuous random variable is a random variable whose 

cumulative distribution function is a continuous function. 

The function  xf  is called a density function of a continuous random 

variable.  

General properties of the density function: 

1.  xf  is a non-negative function, i.e.   0xf  for all x. 

2.  xf  is a non-decreasing function for   ,x , then:  

1)( 




dxxf  

(the condition of normalization of the function  xf ).  

3. The relationship between the functions  xf  and  xF : 

  



x

dxxfxF )(         and            xFxf  . 

4. The probability that a random variable X  lies in the interval  21, xx  

is equal to the increment of its density distribution function on this inter-

val; i.e.:    
2

1

21

х

х

dxxfxXxP . 

Example 29.1. The density function of a continuous variable X  is giv-

en  by   
















2,0

20,24

0,0

)( 2

x

xxxс

x

xf .  A.  What  is  the  value  of  c ?  

B. Find  1XP . 
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Solution. Since  xf  is a probability density function, we must have the 

condition of normalization of this function that 1)( 




dxxf , implying that: 

  10240)(
2

2

0

2
0

 








dxdxxxсdxdxxf  

or 

  124
2

0

2  dxxxс       or      1
3

2
2

3
2

2
4

2

0

3
2

2

0

32
































x
xс

xx
с  

or 

1
3

8
0

3

16
8 








 сс           or          

8

3
с . 

So, the probability density function is:  

 




















2,0

20,24
8

3

0,0

)( 2

x

xxx

x

xf . 

Let’s find  1XP : 

       


2

2

1

2

1

024
8

3
)(11 dxdxxxdxxfXPXP  

2

1

3

4

3

8

8

3

3

12
12

3

22
22

8

3

3

2
2

8

3 3
2

3
2

2

1

3
2 




































 














 

















x
x . 

Example 29.2. The differential distribution function of a continuous  

variable X  is given by 





















2,0

21,
2

1

1,0

)(

x

xx

x

xf . Find the integral distribu- 
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tion function  xF . Plot the graphs of the functions  xf  and  xF .  

Solution. The integral distribution function  xF  according to the formu-

la is   



x

dxxfxF )( .  

 If 1x , then   0xf  and   



xx

dxdxxfxF 00)( . 

 If 21  x , then    


xx

dxxfdxxfdxxfxF
1

1

)()()(  

222

1

2

1

2

1

22

1

22

1
0

22

1

2

1

1 xx
x

x
x

x
dxxdx

x
x

































 



. 

 If 2x , then     


2

1 2

1

)()()()(
xx

dxxfdxxfdxxfdxxfxF  







































  



1
2

1

2

1
2

2

1

2

2

2

1

2
0

2

1
0

22
2

1

22

1 2

1

x
x

dxdxxdx
x

 

1012  . 

 Let’s write the formula for the integral distribution function  xF : 





















2,1

21,
22

1,0

)(
2

x

x
xx

x

xF . 

Example 29.3. The integral distribution function of a continuous varia-

ble X  is given by 






















5,1,1

5,15,0,
2

12

5,0,0

)(

x

x
x

x

xF . Find the density function 

)(xf . 
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Solution. It is known that )()( xFxf  . Thus: 

















































 





5,1,0

5,15,0,
2

02

5,0,0

5,1,)1(

5,15,0,
2

12

5,0,)0(

)()(

x

x

x

x

x
x

x

XFxf  

















5,1,0

5,15,0,1

5,0,0

x

x

x

.  

29.3. Numerical characteristics of absolutely continuous random  

variables and their properties 

 

 Let’s consider basic numerical characteristics of an absolutely continu-

ous random variable. 

The mathematical expectation  XM  of an absolutely continuous 

random variable is calculated by the formula: 






 dxxfxXM )()( .     (29.1) 

For existence of the expectation (29.1), it is necessary that the corre-

sponding integral converge absolutely. 

General properties of a mathematical expectation: 

1.   ССM   for any real С . 

2.    XMХM    for any real  . 

3.      YMXMYХM  . 

4.      YMXMYХM    for any real   and  . 

5.      YMXMYХM  . 

6.      YMXMYХM    for any real   and  . 

7.      YMXMYХM  . 

Here YХ ,  are mutually independent random variables. 
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The variance )(XD  of an absolutely continuous random variable is 

defined by the formula: 

 





22 )()()( XMdxxfxXD   

or  

 




 dxxfXMxXD )()()(
2

. 

General properties of a variance: 

1.   0СD  for any real С . 

2. The variance is nonnegative:   0ХD . 

3.    XDХD  2  for any real   and  . 

4.    XDХD  2  for any real  . 

5.      YDXDYХD   and      YDXDYХD  . 

6.              XMYDYMXDYDXDYХD 22  . 

The root-mean-square deviation (or standard deviation) )(X  of 

an absolutely continuous random variable is the square root of its variance: 

)()( XDX  . 

 A root-mean-square deviation has the same dimension as the random 

variable itself.  

A mode of an absolutely continuous random variable oM  is a point of 

maximum of the probability density function )(xf .  

The expectation   k
aXM   is called the k -th moment of an abso-

lutely continuous random variable X  about a . The moments about zero are 

usually referred to simply as the moments of a random variable and some-

times they are called initial moments. The k -th moment satisfies the relation: 

 dxxfxk
k 





 . 
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 If  XMa   then k -th moment of the random variable X  about a  is 

called the k -th central moment. The k -th central moment satisfies the rela-

tion: 

    dxxfXMx
k

k 




 . 

Example 29.4. The density function of a continuous variable X  is giv-

en by  
















5,1,0

5,15,0,1

5,0,0

x

x

x

xf . Calculate: a) the mathematical expec-tation 

)(XM  and the variance )(XD ; b) the probability that a random variable X  

lies in the interval  3.2,0.1 ; c) plot graphs of the functions )(XF  and )(xf . 

Solution. A. Let’s find the mathematical expectation: 

  








5.1

5.0 5.1

5.0

010)()( dxxdxxdxxdxxfxXM  

    12
2

1
25.025.2

2

1
5.05.1

2

1

2
00 22

5.1

5.0

25.1

5.0

 
х

xdx . 

Let’s calculate the variance:    




22 )()()( XMdxxfxXD  

  




5.1

5.0

2
5.1

5.0 5.1

222
5.0

2 1001010 dxxdxxdxxdxx  

     1125.0375.3
3

1
15.05.1

3

1
1

3

33

5.1

5.0

3х
 

0833.0125.3
3

1
 . 
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B. Let’s find the probability that a random variable X  lies in the interval 

 3.2,0.1  by the formula      1221 xFxFxXxP  . 

Thus, 5.0
2

1
1

2

112
1)1()3.2()3.21( 


 FFXP . 

C. Let’s plot graphs of the functions )(XF  and )(xf  (fig. 29.1, 29.2). 

 

0

0,2

0,4

0,6

0,8

1

1,2

-1 -0,5 0 0,5 1 1,5 2 2,5 3

 

0

0,2

0,4

0,6

0,8

1

1,2

-1 -0,5 0 0,5 1 1,5 2 2,5 3

 

Fig. 29.1. The graph of )(xF  Fig. 29.2. The graph of )(xf  

 

Recommended bibliography: [5; 6; 8; 10; 11]. 

 

Theme 30. Uniform, exponential and normal laws  

of probabilities distribution. Transformation of sequences  

of normal distributed random variable 

 

30.1. A uniform law of probabilities distribution  

and its numerical characteristics 

 

The uniform law of distribution is characterized by a probability density 

function )(xf  (the differential distribution function) (fig. 30.1) and a cumula-

tive distribution function  xF  (the integral distribution function) (fig. 30.2). 






















bx

bxa
ab

ax

xf

,0

,
1

,0

)( , 
























bx

bxa
ab

ax

ax

xF

,1

,

,0

)( . 

 

The probability that a random variable X  lies  in  the  interval   ,  is  
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equal to the increment of its integral distribution function on this interval; i.e.: 

     
ab

FFXP






 . 

 

Fig. 30.1. The graph of )(xf  Fig. 30.2. The graph of )(xF  

 

Numerical characteristics of uniform random variables are 

1) mathematical expectation:   
2

)(
ba

XM


 ; 

2) variance:   
 

12
)(

2
ab

XD


 ; 

3) root-mean-square deviation (or standard deviation):  
32

)(
ab

X


 . 

Example 30.1. The parameters ba,  of the uniform law of distribution 

are given: 2a  and 6b . Find: a) functions  xf  and  xF ; b) the mathe-

matical expectation )(XM , the variance )(XD  and the root-mean-square 

deviation )(X ; c) )30(  XP . 

Solution. Let’s find functions  xf  and  xF  substituting 2a  and 

6b  into formulas for functions: 










































6,0

62,
4

1

2,0

6,0

62,
26

1

2,0

)(

x

x

x

x

x

x

xf , 
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









































6,1

62,
4

2

2,0

6,1

62,
26

2

2,0

)(

x

x
x

x

x

x
x

x

xF . 

Let’s calculate the numerical characteristics: 

4
2

62

2
)( 







ba
XM ,    

 
3

4

12

4

12

26
)(

22




XD , 

3

2

32

4

32

26

32
)( 







ab
X . 

Let’s calculate the probability that the uniform random variable X  lies 

in the interval  3,0 : 

        75.0
4

3

26

03
0330 




 FFXPXP  . 

30.2. An exponential law of distribution 

 

The exponential distribution law is characterized by a probability density 

function )(xf  (the differential distribution function) (fig. 30.3) and a cumula-

tive distribution function  xF  (the integral distribution function) (fig. 30.4). 










 0,

0,0
)(

xe

x
xf

x
, 










 0,1

0,0
)(

xe

x
xF

x
. 

 

The probability that a random variable X  lies in the interval   ,  is 

equal to the increment of its integral distribution function on this interval; i.e. 

         eeFFXP . 

Numerical characteristics of exponential random variables are 

1) mathematical expectation:   


1
)( XM ; 
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2) variance:   
2

1
)(


XD ; 

3) root-mean-square deviation (or standard deviation):   



1

)( X . 

 

 

Fig. 30.3. The graph of )(xf  Fig. 30.4. The graph of )(xF  

 

Example 30.2. The probability density function of the exponential law  

of distribution 










 0,05.0

0,0
)(

05.0 xe

x
xf

x
 is given. Find: a) the function 

 xF ; b) the mathematical expectation )(XM , the variance )(XD  and the 

root-mean-square deviation )(X ; c) )102(  XP . 

Solution. We have that 05.0  from the formula of )(xf . Let’s sub-

stitute this parameter into the formula for )(xF  and find the numerical char-

acteristics: 



















 0,1

0,0

0,1

0,0
)(

05.0 xe

x

xe

x
xF

xx
, 

20
05.0

11
)( 


XM , 400

05.0

11
)(

22



XD , 20

05.0

11
)( 


 X . 

Let’s calculate the probability )102(  XP  that a random variable X  

lies in the interval  10,2 : 
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      1005.0205.0102 eeeeXPXP   

29831.060653.090484.0  . 

30.3. A normal law of probabilities distribution  

and its standard representation 

 

A random variable X  has the normal distribution with parameters 

 2,a  if its probability density function )(xf  and the cumulative distribution 

function )(xF  have the forms: 

 
2

2

2

2

1
)( 



ax

exf




 ,                 

 

dxexF
x

ax








2

2

2

2

1
)( 


. 

The normal distribution law is characterized by two functions: 

the probability density function )(xf  (the differential distribution function) and 

the cumulative distribution function )(xF  (the integral distribution function). 

Let’s check whether that satisfies the normalization property of the dif-

ferential distribution function. Indeed,   0xf . 

Let’s calculate:  

 

 









 












21

2

,,

,,

2

1 2

2

ttdtdx

atx
ax

t
dxedxxf

ax







  

12
2

1

2

1

2

1
22

22

 
















dtedte

tt

, 

where  

22

2








dte

t

                                     (30.1) 

is called Poisson’s integral. 
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 Let’s define the integral distribution function )(xF  for the normal distri-

bution law: 

 

 

dxedxxfxF
x

ax
x










2

2

2

2

1
)( 


. 

 Let’s calculate the obtained integral: 

 









 






21

2

,,

,

2

1
)(

2

2

ttdtdx

atx
ax

t
dxexF

x
ax







  























ax
t

ax
t

dtedte 22

22

2

1

2

1
. 

 Let’s use the property of additivity of an integral, i.e. 

  














ax
tt

dtedtexF
0

2
0

2

22

2

1

2

1
. 

 Let’s apply Poisson’s integral 2
2

10
2

2






dte

t

 and transform this in-

tegral 







ax
t

dte
0

2

2

2

1
 using Laplace integral function   dtex

x t





0

2

2

2

1


, 

i.e. dte
ax

ax
t














 





0

2

2

2

1
, and obtain:  

  






 








 







axax
xF

2

1
2

2

1

2

1
. 

 Thus, the linear transformation 


ax
t


  reduces the normal distribu- 
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tion with parameters  2,a  to the standard normal distribution with parame-

ters  1,0  and the cumulative distribution function 

 


 t
xf )( ,             txF 

2

1
)( , 

where   2

2

2

1
t

et





  and   dtet
t t





0

2

2

2

1


 are Laplace differential 

and integral functions. 

The values of the probability density function )(xf  and the cumulative 

distribution function )(xF  are computed by (see appendix A and appen-

dix B). 

Graphs of the differential function )(xf  and the integral function )(xF  

are shown in fig. 30.5 and fig. 30.6. For the normal distribution the curve of 

)(xf  reaches the maximum at ax   and it is symmetric relative to  

the line ax  . 

 

 

Fig. 30.5. A density curve )(xf  graph Fig. 30.6. The graph of )(хF  

 

Numerical characteristics of normal distribution law are: 

1) mathematical expectation:     aXM )(    0)( tM , 

2) variance:    
2)( XD    1)( tD , 

3) root-mean-square deviation:     )(X    1)( t . 

Let’s check that aXM )(  using the definition of the mathematical ex-

pectation of the absolutely continuous variable: 
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   

 












  











21

2

,

,

,

2

1 2

2

tt

dtdx

atx
ax

t

dxexdxxfxXM

ax







  

  dte
a

dttedteat

ttt
















 222

222

222

1







. 

The first integral equals zero, because it is the integral of the odd func-

tion on the symmetric interval relative to the origin. The second one is the 

Poisson’s integral (30.1). 

Thus,   a
a

XM  


2
2

. 

Let’s check that 
2)( XD  using the definition of the variance of  

the absolutely continuous variable: 

        

 

  











dxeaxdxxfXMxXD

ax
2

2

222

2

1 


 









 







dtet

ttdtdx

atx
ax

t
t

22
2

21

2

2
,,

,








  




































0

2
2

2
2

22

2

222

2
2

,

,
t

ttt te
e

t
devdttedv

dtdutu




 

2
2

2

2
2

2
2

0
2

2






















 dte

t



. 



 59 

Thus,   2XD . 

 Let’s find probability that a random variable X , distributed by the nor-

mal law with parameters  2,a , lies in the interval   , : 

      














 








 











aa
FFXP

2

1

2

1
 








 








 








 aa
. 

Thus, the probability that a random variable X  lies in the interval 

  ,  is equal to the increment of its integral distribution function on this in-

terval; i.e. 








 








 











aa
FFXP )()()( . 

Example 30.7. The probability density function of the normal law of  

distribution 

 
8

3
2

22

1
)(






x

exf


is given. Find the integral function, calcu-

late the numerical characteristics and )71(  XP .  

Solution. We have that 3a  and 2  from the formula of )(xf . 

Let’s substitute these parameters into the formula for )(xF  and find the nu-

merical characteristics: 

   

 






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dxedxexF
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22

1

2

1
)(


  

 

dxe
x x







 8

3
2

22

1


, 

3)(  aXM ,             42)( 22 XD ,          2)(  X . 

Let’s calculate the probability )71(  XP  that a random variable X   
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lies in the interval  7,1 : 

    






 
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







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


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

 





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

 
 1212

2

31

2

37

xx

propertytheuse
 

 

 

1359.03413.04772.0

3413.01

4772.02 





Bappendixuse

. 

Let’s find probability that a module of the deviation of the normal dis-

tributed random variable from its mathematical expectation is less than any 

nonnegative  , i.e.   aXP : 

      aXaPaXPaXP   
































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

 
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





 
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


















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aaaa
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 Thus,  

  












 2aXP .                              (30.2)  

Three sigma rule. Let’s transform the formula (30.2). Let t , then 

   ttaXP  2 . 

If 1t , i.e.   , then     6826.012  aXP . It means that 

68 % of values of a random variable X  is located on the interval  a . 

If 2t , i.e.  2 , then     9544.0222  aXP . It means 

that 95 % of values of a random variable X  is located on the interval 

 2a . 

If 3t , i.e.  3 , then     9973.0323  aXP . Hence 

three sigma rule means the normal  distributed  random  variable X  pos-

sesses all its values on the interval  3a  with the probability 100 %. 
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30.4. Gamma-distribution 

 

A random variable X  that is gamma-distributed with shape k  and 

scale   is denoted by  ,k .  

The probability density function and the cumulative distribution function 

of the gamma distribution can be expressed in terms of the gamma function 

parameterized in terms of a shape parameter k  and scale parameter   and 

the lower incomplete gamma function, i.e. 

   
















0if,,0

0if,
1 1

x

xex
kxf

x

k

k


 ,        
 













x

k

x
k

dxxfxF
0

,

)(




,  

where   dtetk tk 




0

1
 is the gamma function, both k  and   are positive  

values.  

Numerical characteristics of gamma distribution law are 

1) mathematical expectation: kXM )( ; 

2) variance: 
2)( kXD  ; 

3) root-mean-square deviation (or standard deviation): kX  )( . 

 

30.5. 
2 -distributions (chi-square) of Student and Fisher,  

their relationship with a standard normal law 

 

A random variable  nX 2  has the chi-square distribution with n   

degrees of freedom if its probability density function and the cumulative dis-

tribution function have the forms: 

 





























0if,,0

0if,

2
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1
2

1
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2

x

xex

xf

xn

n
 ,                       (30.3) 



 62 

  













x tn

n
dtetxF

0

2
1

2

2

2
2

1


,  

where 









2


 is the gamma function.  

Numerical characteristics of gamma distribution law are: 

1) mathematical expectation:      nnMXM  2)(  ; 

2) variance:      nnDXD 2)( 2   ; 

3) root-mean-square deviation:        nnX 22   . 

Main property of chi-square distribution. For an arbitrary n  the sum: 





n

k
kXX

1

2
 

of squares of independent random variables obeying the standard normal 

distribution has the chi-square distribution with n  degrees of freedom.  

The values  n2  are tabulated. 

Relationship with other distributions: 

1. For 1n , the formula (30.3) gives the probability density function of 

the square 
2X  of a random variable with the standard normal distribution. 

2. For 2n , the formula (30.3) gives the exponential distribution with 

parameter 
2

1
 . 

3. As n  the random variable  nX 2  has an asymptotically 

normal distribution with parameters  nn 2, . 

A random variable  ntX   has Student’s distribution (t -dis-

tribution) with n  degrees of freedom ( 0n ) if its probability density func-

tion and the cumulative distribution function have the forms (fig. 30.7, 30.8):  
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,                         (30.4) 
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where 









2

n
 is the gamma function and   ,x . 

Numerical characteristics of gamma distribution law are 

1) mathematical expectation:    0)(  ntMXM  if 1n ; 

2) variance:   












2for,0

2for,
2)(

n

n
n

n

ntDXD ; 

3) root-mean-square deviation:   ntDX )( . 

 

  

Fig. 30.7. Probability density  

function of Student’s  

t -distribution for 3n  

Fig. 30.8. Cumulative distribution 

function of Student’s  

t -distribution for 3n  

 

Main property of Student’s distribution. If   and  n2  are independent 

random variables and   has the standard normal distribution, then the ran-

dom variable  

 
 n

n
nt

2
  
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has Student’s distribution with n  degrees of freedom.  

The values  nt  are tabulated. 

 Relationship with other distributions: as n  Student’s distribution is 

an asymptotically normal distribution with parameters  1,0 . 

Student’s distribution is used when testing the hypothesis about the 

mean of a normally distributed population with an unknown variance. 

A random variable X  has F -distribution (or Fisher–Snedecor distribu-

tion) with parameters 1k  and 2k  if its probability density function has the 

form:  

    221
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 


 , 

where  n  is the gamma function and 0x . 

 F -distribution (or Fisher–Snedecor distribution) is called the distri- 

bution of a random variable 

 

 2
2

2

1
2

1

1

1

k
k

k
k

FX





 , where  1
2 k  and  2

2 k  

are random variables which have 
2 -distribution with 1k  and 2k  degrees of 

freedom, respectively.  

Main property of F -distribution. F -distribution (or Fisher–Snedecor 

distribution) is the distribution of a random variable 

 

 2
2

2

1
2

1

1

1

k
k

k
k

FX





 , 

where  1
2 k  and  2

2 k  are random variables which have 
2 -distribution 

with 1k  and 2k  degrees of freedom, respectively.  

The values F  are tabulated. 

 Relationship with other distributions: as n  F -distribution is an as-

ymptotically normal distribution. 



 65 

Student’s distribution is used when testing the hypothesis about the 

mean of a normally distributed population with an unknown variance. 

Recommended bibliography: [2; 5; 7; 9; 11]. 

 

Theme 31. Random vectors and laws of their distributions:  

joint (consistent, marginal and conditional. Systems  

of independent random variables. Conditional and marginal 

numerical characteristics 

 

31.1. Random vectors and joint law of probabilities distribution,  

its components 

 

The concept of a random vector is a multidimensional generalization of 

a random variable.  

Let’s suppose that random variables nXXX ,,, 21   are defined on a 

sample space   or, in other words, each outcome of a random experiment 

on a sample space   may need to be described by a set of 1n  random 

variables nXXX ,,, 21  . Then one says that an n -dimensional random 

vector  nХХХX ,,, 21   or a system of random variables is given. 

The random variables nXXX ,,, 21   can be viewed as the coordinates of 

points in an n -dimensional space. 

 For multidimensional random variables we can use basic concepts of 

one-dimensional random variables.  

The distribution function  nX
xxxF ,,, 21   of a random vector 

 nХХХX ,,, 21   is defined by the formula: 

         nnnX
xXxXxXPxxxF   ,,,:,,, 221121  . 

 This distribution function  nX
xxxF ,,, 21   is nondecreasing one of its 

arguments nxxx ,,, 21   and it defines a law of probabilities distribution of a 

random vector  nХХХX ,,, 21  . 

A random vector  nХХХX ,,, 21   is called discrete if there ex-

ists a finite set or a infinite set of n -dimensional  random  vectors ,,, 21 xx  
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nx  such that: 

  1
1




i
ixXP . 

A distribution law of a discrete random vector is defined completely by 

definition of vectors ,, 21 xx  and their probabilities  11 xXPp  , 

 22 xXPp  , … such that 1...21  pp . 

A random vector X  is called absolutely continuous (or, simply, con-

tinuous) if there exists nonnegative function  nX
xxxf ,,, 21   such that for 

any  nxxxx ,,, 21   a distribution function    хFxxxF
XnX

,,, 21   

can be presented in a form of n -dimensional integral, i.e.: 

   



nх

nnX

хх

X
dttttfdtdtхF ,,, 2121

21

 . 

This function  nX
xxxf ,,, 21   is called a density of probabilities 

distribution of a random vector X . 

A density of distribution also determines distribution law of a random 

vector as: 

 
 

n

nX
n

nX xxx

xxxF
xxxf











21

21
21

,,,
,,, . 

For independent random variables nХХХ ,,, 21   a distribution 

function  nX
xxxF ,,, 21   of distribution n -dimensional random vector 

 nХХХX ,,, 21   is equal to a product of distribution functions of ran-

dom variables nХХХ ,,, 21  , i.e. 

       nХХХnX
xFxFxFxxxF

n
  2121 21

,,, . 

This condition presents a base of a definition of random variables’ in-

dependence.  

If  nХХХX ,,, 21   is an absolutely continuous random vector,  
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then for independent random variables we have 

       nХХХnX
xfxfxfxxxf

n
  2121 21

,,, . 

If  nХХХX ,,, 21   is a discrete random vector, then for inde-

pendent random variables we have: 

       nnnn xXPxXPxXPxXxXxXP   22112211 ,,, . 

Let’s consider the following properties of random vectors by the exam-

ple of systems of two-dimensional random variables. 

 

31.2. A system of two-dimensional random variables. Probabilities  

of a function of joint distribution, a component of two-dimensional  

vector. Marginal functions of distribution of a component  

of a random vector 

 

Let’s denote  YXZ ,  as a two-dimensional random vector and call  

each random variable X  and Y  as a component.  

The distribution function    yxFyxF YХ ,, ,  of a two-dimensional 

discrete or absolutely continuous random vector  YXZ ,  or the joint distri-

bution function of the random variables X  and Y  is defined as  the pro-

bability of the simultaneous occurrence (intersection) of the events  xX   

and  yY  , i.e. the probability that X  possesses the value less than x  at Y  

less than y : 

     yYxXPyxFyxF YХ  ,,, , .    (31.1) 

Geometrically,  yxF ,  can be interpreted as the probability that the 

random point  YX ,  lies in the lower left infinite quadrant with vertex  yx,  

(fig. 31.1). 

Given the joint distribution of random variables X  and Y , one can find 

the distributions of each of the random variable X  and Y , known as 

the marginal distributions: 

        ,, , xFYxXPxXPxF YХХ , 
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       yFyYXPyYPyF YХY ,, ,  . 

x

y

(x, y)

X< x, Y< y

0

 

Fig. 31.1. Geometrical interpretation of the distribution function  yxF ,  

 

The marginal distributions don’t completely characterize the two-

dimensional random variable  YX , , i.e. the joint distribution of the random 

variables X  and Y  can’t in general be reconstructed from the marginal dis-

tributions. 

Let’s enumerate properties of the distribution function  yxF ,  (which 

are similar to properties of one-dimensional random variable). 

1.   1,0  yxF , because   1,0  yYxXP . 

2.  yxF ,  is a nondecreasing function of each of the arguments x  

and y . 

3. If one of the arguments of  yxF ,  approaches  , then this func-

tion tends to the distribution function of another argument which doesn’t ap-

proach  , i.e.:  

      xFxFyxF
y




,,lim , (31.2) 

      yFyFyxF
x




,,lim . (31.3) 

4. If both arguments of  yxF ,  tend to  , then this function ap-

proaches 1, i.e.:  

       1,,,lim 




yxPFyxF

y
x

.  

5. If both or one of the arguments of  yxF ,  tends to  , then this  

function approaches 0 , i.e.:  



 69 

       0,lim,lim,lim 





yxFyxFyxF
yx

y
x

  

 6. If components X  and Y  are independent      yFхFyxF 21,  . 

7. The probability that the random vector  YX ,  lies into an arbitrarily 

rectangle  dYcbXa  ,  with sides parallel to the coordinate axes is 

calculated by the following formula:  

          cbFdaFcaFdbFdYcbXaP ,,,,,  . (31.4) 

8. The function  yxF ,  is left continuous in each of the arguments. 

A two-dimensional random vector is said to be discrete if each of 

the random variables X  and Y  is discrete. 

If the random variable X  takes the values nxxx ,,, 21   and the ran- 

dom variable Y  takes the values myyy ,,, 21  , then the random vector  

 YX ,  can take only the pairs of values.  

A distribution law of a discrete two-dimensional random vector is 

called a set of possible values ixX  , jyY   ( ni ,1 ; mj ,1 ) and their 

corresponding probabilities of joint occurrence   jiij yYxXPp ,  

 ji yxp ,  under condition   1,
1 1


 

n

i

m

j
ji yxp .  

It is convenient to describe the distribution of a two-dimensional dis-

crete random variable using the distribution law shown in table 31.1. Here 

each cell  ji,  contains the probability  ji yxp ,  of a distribution of events 

 ji yYxX  ,  ( ni ,1 ; mj ,1 ).  

Since events  ji yYxX  ,  ( ni ,1 ; mj ,1 ) which mean that the 

random variable X  possesses the value ix  and the random variable Y  pos-

sesses the value jy  are disjoint and only possible, i.e. form a complete 

group of events, then a sum of their probabilities equals 1, i.e. 


 


n

i

m

j
ijp

1 1

1. 
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Table 31.1 

The distribution law of a discrete two-dimensional  

random vector  YX ,  

 

  Y  

  X  1y  2y  … my  


n

i
xi

p
1

 

1x  11p  
12p  … mp1  

1xp  

2x  21p  22p  … mp2  
2xp  

… … … … … … 

nx  1np  2np  … nmp  
nxp  




m

j
y j

p
1

 
1y

p  
2yp  … myp  1 

 

A balance column or raw of this table of distribution  YX ,  gives pro-

babilities respectively for distribution laws of one-dimensional components 

 ii px ,  or  jj py , .  

In order to find the probability that one-dimensional random variable 

possesses a definite value using the table of distribution (see table 31.1) it is 

necessary to summarize probabilities ijp  of the corresponding raw (column) 

for this value of the given table:  

 



m

j
ijx pp

i
1

,      ni ,1 ,  (31.6) 

or  

 



n

i
ijy pp

j
1

,      mj ,1 .  (31.7) 

If some numbers ijp  are equal to zero then in this case an occurrence 

of this random variable is impossible.  

On the base of the distribution law of a random vector  YX ,  

(tabl. 31.1) we can define the distribution law of each one-dimensional ran-

dom variable X  and Y . Since the event  ixX   is a sum of events 



 71 

 1, yYxX i  ,  2, yYxX i  , …,  mi yYxX  , , then its probability 

is calculated by the formula (31.6).  

The distribution law of one-dimensional random variable X  at calculat-

ed values 
ixp  can be given in a form of a table 31.2 and similarly to that a 

distribution law of one-dimensional random variable Y  is given in a form of a 

table 31.3. 

 

Table 31.2 

A distribution law of one-dimensional random variable X  

Values of X  
1x  2x  … 

nx  

Probabilities 
1x

p  
2xp  … 

nxp  

 

Table 31.3 

A distribution law of one-dimensional random variable Y  

Values of Y  1y  2y  … my  

Probabilities 
1y

p  
2yp  … 

myp  

 

31.3. Absolute continuous distributions. A density of joint distribution 

and its properties. Marginal densities of distribution of components of a 

random vector 

 

In addition to a distribution function  yxF ,  a characteristic of a system 

of two absolutely continuous random variables is a density of a distribution of 

probabilities  yxf , . 

A density of a distribution of probabilities  yxf ,  for a system of 

two absolutely continuous random variables  YX ,  is the second mixed de-

rivative of its distribution function  yxF , :  

  
 

yx

yxF
yxf






,
,

2

.  (31.8) 

This function  yxf ,  can exist under condition that  yxF ,  is continu- 
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ous relative to its arguments x  and y  and twice differentiable. 

Geometrically the function  yxf ,  in three-dimensional space can be 

compared with a definite surface which is called a distribution surface of 

probabilities of a system of two absolutely continuous random variables 

 YX ,  (fig. 31.3).  

1. The function   0, yxf , because  yxF ,  is nondecreasing relative 

to arguments x  and y . 

2. For this function  yxf ,  the normalization condition is fulfilled, i.e.:  

   1, 


dxdyyxf , (31.9) 

where   is a domain of a definition of an absolutely continuous random vari-

able;  dxdyyxf ,  is the probability of a location of a system of two absolute-

ly continuous random variables  YX ,  in the rectangle with sides dx , dy  

(see fig. 31.3). 

 

x

y

x x+dx

y

y+dy

0

(x,y+dy)

(x+dx,y)

(x+dx,y+dy)

(x,y)

 

Fig. 31.3. A distribution surface of probabilities of a system of two  

absolutely continuous random variables  YX ,  

 

A density of a distribution of probabilities has the following properties 

 yxf , :  

If   yx , , then (31.9) has the following 

form:  

   








1, dxdyyxf . (31.10) 
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3. The relationship between a distribution function of probabilities of 

a system of two random variables and a density of probabilities is defined by: 

    
 


x y

dxdyyxfyxF ,, . 

4. If  dycbxa  , , then:  

     
x

a

y

c

dxdyyxfyxF ,, . (31.11) 

5. The probability of a location of a system of two random variables 

 yx,  into the domain D  is calculated by the following formula:  

     
D

dxdyyxfDyxP ,, .  

The probability of a location of a system of two random variables  yx,  

into the rectangular domain  dycbxaD  , : 

     
b

a

d

c

dxdyyxfdycbxaP ,, .  (31.12) 

6. If  xf1 ,  yf2  are distribution densities of each component, then 

   




 dyyxfxf ,1 ,       




 dxyxfyf ,2  

(31.13) 

 




11 dxxf ,                        




12 dyyf . 

7. If components X  and Y  are independent, then: 

     yfxfyxf 21,  . 
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31.4. Conditional laws of probabilities distribution of a random vector.  

A characteristic of a set of independent random variables 

 

31.4.1. Conditional laws of probabilities distribution of a discrete 

random vector. Let’s consider a discrete two-dimensional random variable 

 YXZ , . Possible values of its components are nxxx ,,, 21   and 

myyy ,,, 21  . 

Let’s suppose as the result of a trial the random variable Y  has pos-

sessed the value 1y   1yY   then the random variable X  can take one of 

possible values: nxxx ,,, 21  . Let’s denote the conditional probability that 

ixX   under condition 1yY   as  iy xp
1

 or  1/ yxp i  ( ni ,1 ). 

In the general case we denote conditional probabilities of the compo- 

nent X  under condition jyY   as  ji yxp /  ( ni ,1 ; mj ,1 ) and condi-

tional probabilities of the component Y  under condition ixX   as  ij xyp / . 

A conditional distribution of the component X  under condition jyY   

is called a set of conditional probabilities  ji yxp /  under condition the case 

jyY   has occurred. Similarly to that we define a conditional distribution of 

the component Y  under condition ixX  .  

According to a distribution of a two-dimensional variable  YXZ ,  we 

can get conditional laws of a distribution of components X  and Y : 

for X :                          
 
 j

ji
ji

yp

yxp
yxp

,
/  , 

for Y :                          
 
 i

ji
ij

xp

yxp
xyp

,
/  . 

 It is necessary to mark that a sum of probabilities of a conditional distri-

bution of each component equals 1. 

 

31.4.2. Conditional laws of probabilities distribution of a continu-

ous random vector. In the case of continuous distribution of a variable 
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 YXZ ,  we have conditional densities of a distribution of the component X  

under condition jyY   and the component Y  under condition ixX  .  

A conditional density  yxf /1  of a distribution of the component X  

under condition jyY   is called a ratio of a density of joint distribution  

 yxf ,  of a system  YX ,  to a density of a distribution  yf2  of the compo-

nent Y : 

 
 
 yf

yxf
yxf

2
1

,
/  . 

Similarly to that a conditional density  xyf /2  of a distribution of the  

component Y  under condition ixX   is defined by the formula: 

 
 
 xf

yxf
xyf

1
2

,
/  . 

If a density of joint distribution  yxf ,  is known then we can find  xf1  

and  yf2  using the formulas (31.13). 

Let’s write down the following properties for  yxf /1  and  xyf /2 : 

  0/1 yxf ,    




1/1 dxyxf ,  

  0/2 xyf ,    




1/2 dyxyf . 

 

31.5. Numerical characteristics of joint (consistent) distributions  

of systems of random variables: marginal and conditional 

 

A conditional mathematical expectation of a discrete random variable Y  

under condition ixX   is called a product of possible values of the compo-

nent Y  and their conditional probabilities:  

   



m

j
ijji xypyxXYM

1

// . 
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A conditional mathematical expectation  ixXYM /  is a function 

of х , i.e.    xfxXYM i / , which is called the regression function of Y  

on X . 

 Similarly to this we have formulas for a conditional mathematical expec-

tation  jyYXM /  of a discrete random variable X  under condition 

jyY  : 

   



n

i
jiij yxpxyYXM

1

// ,            ygyYXM j / , 

where  yg , which is called the regression function of X  on Y . 

 For continuous random variables we have: 

   




 dyxyfyxXYM // 2 ,          




 dxyxfxyYXM // 1 . 

31.6. Numerical characteristics of a system of two random  

variables. The covariance and the correlation coefficient  

of a two-dimensional random vector 

 

 For two-dimensional random variable  YXZ ,  we can find a mathe-

matical expectation and a variance of each component: 

  xmXM  ,       ymYM  ,       2
xXD  ,       2

yYD  . 

However, these characteristics don’t completely characterize the variable 

 YXZ , , therefore they don’t indicate the degree of the dependence be-

tween components. This role is fulfilled by the covariance (or the correlation 

moment) xy  and the correlation coefficient xyr . 

 The covariance (or the correlation moment) xy  of random variables 

X  and Y  is called the mathematical expectation of a product of derivations 

of these variables from their mathematical expectations: 

   yxxy mYmXM  . 
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 For calculation of the covariance (or the correlation moment) of discrete 

random variables the following formula is used:  

    jiyj

n

i

m

j
xixy yxpmymx ,

1 1


 

 , 

for continuous random variables this formula is used: 

    dxdyyxfmymx yxxy ,  








 . 

 The covariance (or the correlation moment) xy  has the following 

properties: 

 1. yxxy    is the symmetric property. 

 2. 0xy  if X  and Y  are independent variables. 

 3. yxxy   . 

 4.  XDxx  . 

  The correlation moment of random variables X  and Y  has the dimen-

sion equal to the product of X  and Y  dimensions. 

 Along with the correlation moment of random variables X  and Y  one 

often uses the correlation coefficient xyr  which is a dimensionless normalized 

variable.  

 The correlation coefficient xyr  of random variables X  and Y  is the ra-

tio of the correlation moment of X  and Y  to the product of their root-mean-

square deviations (or standard deviations), i.e.  

yx

xy
xyr




 . 

Properties of the correlation coefficient xyr : 

 1. yxxy rr  . 

 2. 1xxr  and 1yyr . 

 3. 1xyr . 
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 4. 0xyr  if X  and Y  are independent variables, i.e. there is no linear 

relation between the random variables. 

 5. 1xyr  if there exists the linear correlation dependence between 

X  and Y . 

Recommended bibliography: [5; 7; 11; 12]. 

 

Theme 32. Laws of large numbers and central limiting theorem 

 

Let’s consider fundamental theorems of probability theory. We can find 

an intuitive way to view the probability of a certain outcome as the frequency 

with which the outcome occurs in long run, when the experiment is repeated 

a large number of times. We can also define probability mathematically as a 

value of a distribution function for the random variable representing the ex-

periment.  

 

32.1. A convergence of sequences of random variables  

in a probability and almost surely 

 

 Let’s consider basic concepts. 

A sequence of random variables ,, 21 ХХ  is said to be converge in 

probability to a random variable Х  if  

  0lim 


XXP n
n

 

for each 0 , i.e. if for any 0  and 0  there exists a number N , de-

pending on   and  , such that the inequality  

    XXP n  

holds for Nn  . 

 A sequence of random variables ,, 21 ХХ  is said to be converge  

almost surely (or with probability 1) to a random variable Х  if  

    1lim: 





 


 XXP n
n

. 
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 Convergence almost surely implies convergence in probability.  

 

32.2. Inequalities of Markov and Chebyshev. Laws of large numbers and 

conditions of their fulfillment 

 

The law of large numbers consists of several theorems establishing av-

erage results and revealing conditions for this stability to occur. 

The notion of convergence in probability is most often used for the case 

in which the limit random variable Х  has the degenerate distribution concen-

trated at a point а    1 aP   and  





n

k
kn Y

n
Х

1

1
, 

where ,, 21 YY  are arbitrary random variables. 

 A sequence ,, 21 YY  satisfies the weak law of large numbers if the 

limit relation  

  0lim
1

lim
1

















  аXPаY

n
P n

n

n

k
k

n
  (32.1) 

holds for any 0 . Equivalently,   1lim 


аXP n
n

. 

 If the relation  

1lim:
1

lim:
1








 










 аXPаY

n
P n

n

n

k
k

n
  

is satisfied instead of (32.1), i.e. the sequence nХ  converges to the num-

ber a  with probability 1, then the sequence ,, 21 YY  satisfies the strong 

law of large numbers. 

Let’s consider important inequalities. 

Markov inequality. For any nonnegative random variable Х  that has 

an expectation  ХM , the inequality  

 
 
2


XM

XP   
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holds for each 0 . 

 Chebyshev inequality. For any random variable Х  with finite vari-

ance  ХD , the inequality 

    
2

1



XD

XMXP   

holds for each 0 . 

 This inequality gives the possibility to estimate an error if we suppose  

that the mathematical expectation is replaced by the average value of 

a bounded sample. 

 Proof. Events    XMX  and    XMX  form a complete 

group of events, i.e. 

      1  XMXPXMXP .   (32.2) 

 Let’s remember the definition of the variance  XD : 

       



n

i
ii pXMxXMXMXD

1

22
. 

 If we truncate the summands in which    XMхi , then 

         


XMXPppXMxXD
k

i
i

k

i
ii

2

1

2

1

2
. 

 Thus, we obtain:  

      XMXPXD 2
 or     

2


XD
XMXP  . 

 Using the formula (32.2) we have: 

       
2

11



XD

XMXPXMXP  . 

The law of large numbers gives a relation between the probability  AP   
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of a random event A  and its relative frequency 
n

m
 with a large number of re-

peated experiments. 

Chebyshev theorem. If nХХХ ,,, 21   is a sequence of independent 

random variables with uniformly bounded finite variances (   DXD 1 , 

  DXD 2 , …,   DXDn  ) then the limit relation 

  1
11

lim
11














 




n

i
i

n

i
i

n
XM

n
X

n
P  

holds for each 0 . 

Bernoulli theorem. Let nm  be the number of occurrences of an event 

A (the number of successes) in n  independent trials and let  APp   be 

the probability of the occurrence of the event A  (the probability of success) in 

each of the trials. Then the sequence of relative frequencies nmn /  of the 

occurrences of the event A  in n  independent trials converges in probability 

to  APp   as n , i.e. the limit relation  

1lim 










p

n

m
P n

n
 

holds for each 0 . 

 

32.3. A convergence in distribution and a weak convergence 

  

Let’s suppose that a sequence      xFxFxF n...,,, 21  of cumulative 

distribution functions converges to a distribution function  xF , i.e.  

   xFxFn
n




lim  

for every point x  at which  xF . In this case, we say that the sequence 

nХХХ ,,, 21   of the corresponding random variables converges to the 

random variable Х  in a distribution. 
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A sequence      xFxFxF n...,,, 21  of cumulative distribution functions 

weakly converges to a distribution function  xF  if: 

     XgMXgM n
n




lim  

for any bounded continuous function g  as n . 

 Convergence in distribution and weak convergence of cumulative dis-

tribution functions are equivalent. 

 

32.4. Central limit theorem. Lyapunov theorem for sequence 

of an independent identically distributed random variable 

 

A sequence nХ  of random with distribution function 
nXF  is called as-

ymptotically normally distributed if there exists a sequence of pairs of real 

numbers nm , 
2
n  such that the random variables:  








 

n

nn mX


 

converge in probability to a standard normal variable. This occurs if and only 

if the limit relation:  

   


 












 n

n

n

aX
Plim  

where  x  is Laplace cumulative distribution function (appendix B), holds 

for any   and   (   ). 

Lyapunov theorem. If nХХХ ,,, 21   is a sequence of independent 

random variables satisfying the Lyapunov condition:  

 

 

0lim

1

1
3











 n

i
i

n

i
i

n
XD

X

, 
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where  iX3  is the third initial moment of the random variable iX , then the 

sequence of random variables 

  

 










n

i
i

n

i
ii

n

XD

XMX

Y

1

1  converges in distribu-

tion to the normal law, i.e. the following limit exists: 

  
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Central limit theorem. Let nm  be the number of occurrences of an 

event A  (the number of successes) in n  independent trials and let  APp   

be the probability of the occurrence of the event A  (the probability of suc-

cess) in each of the trials. Then the sequence of relative frequencies nmn /  

of the occurrences of the event A  in n  independent trials has an asymptoti-

cally normal probability distribution with parameters   nppp /1,  . 

Let nХХХ ,,, 21   be a sequence of independent identically distribut-

ed variables with finite mathematical expectation   aХM i   and finite vari-

ance 
2 . Then as n  the random variable 



n

i
iX

n 1

1
 has an asymptotical-

ly normal probability distribution with parameters  na /, 2 . 

 This theorem can be interpreted as stating for large n , i.e. the se-

quence nХ  of random variables approximately has a normal distribution with 

mean a  and standard deviation n/ .  

Recommended bibliography: [5; 6; 7; 9; 11]. 
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Theoretical questions 

 

1. A stochastic experiment. A random event. A probabilistic space.  

2. An outcome. An impossible event. A sure event.  

3. Equally likely events. Elementary events.  

4. An intersection, a union, a difference of events. 

5. Theorem of a sum of compatible events.  

6. Theorem of a sum of incompatible events.  

7. A classical definition of a probability. 

8. A geometrical definition of a probability. 

9. A statistical definition of a probability.  

10. Permutations, arrangements, combinations with repetitions. 

11. Permutations, arrangements, combinations without repetitions. 

12. The rule of a sum. 

13. The rule of a product. 

14. Inclusion-exclusion principle. 

15. A conditional probability. 

16. Theorem of a product for dependent events.  

17. Theorem of a product for independent events. 

18. A notion of a pairwise independence of random events.  

19. A complete group of events.  

20. Formulas of a total probability and Bayes. 

21. Repeated independent trials.  

22. Bernoulli’s scheme.  

23. A binomial distribution.  

24. The most probable number of successes and its probability.  

25. Local theorem of Moivre–Laplace.  

26. Integral theorem of Moivre–Laplace.  

27. Poisson’s theorem.  

28. Probability of deviation of relative frequency from probability. 

29. A definition of random variables and their classification.  

30. A distribution law of a discrete random variable.  

31. The numerical characteristics of a distribution: a mathematical expecta-

tion, a variance, a root-mean-square deviation, initial and central moments, a 

mode, a median. 

32. Binomial distribution law and its characteristics. 
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33. Geometric distribution law and its characteristics. 

34. Hypergeometric distribution law and its characteristics. 

35. Poisson distribution law and its characteristics. 

36. Negative binomial distribution law and its characteristics. 

37. A definition of continuous random variables.  

38. A definition of absolutely continuous random variables.  

39. Distribution function of probabilities of random variables and its proper-

ties.  

40. A density of distribution and its properties.  

41. Distribution density functions of absolutely continuous random variables.  

42. Numerical characteristics of absolutely continuous random variables and  

their properties. 

43. A uniform law of probabilities distribution and its numerical characteristics.  

44. An exponential law of distribution and its numerical characteristics.  

45. A normal law of probabilities distribution and its standard representation.  

46. Gamma-distribution. 

47. Chi-square distribution of Student and its relationship with a standard 

normal law. 

48. Chi-square distribution of Fisher and its relationship with a standard nor-

mal law. 

49. A random vector. A system of two random variables. 

50. A discrete random vector. 

51. A continuous random vector. 

52. Numerical characteristics of consistent distributions of systems of random 

variables: marginal and conditional.  

53. A covariance of a two-dimensional random vector. 

54. A correlation coefficient of a two-dimensional random vector.  

55. A convergence in probability. 

56. An almost surely convergence. 

57. Inequality of Markov. Inequality of Chebishev.  

58. Laws of large numbers and conditions of their fulfillment.  

59. Chebyshev theorem. Lyapunov theorem.  

60. Bernoulli theorem.  

61. A convergence in distribution and a weak convergence 

62. Central limit theorem. 

 



 86 

 

 

Recommended bibliography 

 

1. Англо-русский словарь математических терминов / под ред. 

П. С. Александрова. – М. : Мир, 1994. – 416 с.  

2. Бузько Я. П. Теорія ймовірностей та математична статистика курсу 

"Математика для економістів". Тексти лекцій / Я. П. Бузько, 

О. О. Єгоршин, Н. В. Панова. – Х. : РВВ ХНЕУ, 1999. – 96 с. 

3. Вправи з курсу "Математика для економiстiв" для студентiв усiх 

спецiальностей усiх форм навчання. Ч. 3 / укл. Е. Ю. Железнякова, 

А. В. Iгначкова, З. Г. Попова. – Х. : РВВ ХНЕУ, 2003. – 108 с.  

4. Гмурман В. Е. Руководство по решению задач по теории веро-

ятностей и математической статистике / В. Е. Гмурман. – М. : Выс-

шая школа, 2001. – 576 с.  

5. Гмурман В. Е. Теория вероятностей и математическая статистика : 

учебн. пособие для вузов / В. Е. Гмурман. – 6-е изд. – М. : Высшая 

школа, 1998. – 480 с. 

6. Кремер Н. Ш. Теория вероятностей и математическая статистика 

/ Н. Ш. Кремер. – М. : ЮНИТИ-ДАНА, 2000. – 544 с. 

7. Теорія ймовірностей. Конспект лекцій / О. К. Шевченко, Г. К. 

Снурнікова, О. Д. Анохіна. – Х. : Вид. ХНЕУ, 2009. – 88 с.   

8. Guidelines for practical tasks of the educational discipline "Higher and 

applied mathematics" for foreign and English-learning full-time students 

of the direction 6.140103 "Tourism" (Random variables and their charac-

teristics) / compiled by Ie. Misiura. – Kh. : Publishing House of KhNUE, 

2012. – 36 p. (English, Ukrainian) 

9. Kelbert M. Probability and statistics. Volume 1. Basic probability and 

statistics / Yuri Suhov, Mark Kelbert. – New York; Madrid : Cambridge 

University Press, 2005. – 360 p. 

10. Ross S. Introduction to probability and mathematical statistics 

/ Sheldon Ross. – San Diego : Elsevier Academic Press, 2004. – 641 p. 

11. Tavare S. Lectures on probability theory and statistics / Simor Tavare, 

Ofer Zeitouni. – Berlin; Heidelberg : Springer-Verlag, 2004. – 322 p. 



 87 

12. Probability and statistics for engineers and scientists / R. E. Walpole, 

R. H. Myers, S. L. Myers, et al. – London : Pearson education LTD, 

2007. – 823 p. 



 88 

Appendices 

Appendix A 

(to be continued) 

Values of Laplace differential function   2

2

2

1
x

ex





   

 

x 0 1 2 3 4 5 6 7 8 9 

0,0 0,3989 0,3989 0,3989 0,3988 0,3986 0,3984 0,3982 0,3980 0,3977 0,3973 

0,1 0,3970 0,3965 0,3961 0,3956 0,3951 0,3945 0,3939 0,3932 0,3925 0,3918 

0,2 0,3910 0,3902 0,3894 0,3885 0,3876 0,3867 0,3857 0,3847 0,3836 0,3825 

0,3 0,3814 0,3802 0,3790 0,3778 0,3765 0,3752 0,3739 0,3726 0,3712 0,3697 

0,4 0,3683 0,3668 0,3652 0,3637 0,3621 0,3605 0,3589 0,3572 0,3555 0,3538 

0,5 0,3521 0,3503 0,3485 0,3467 0,3448 0,3429 0,3410 0,3391 0,3372 0,3352 

0,6 0,3332 0,3312 0,3292 0,3271 0,3251 0,3230 0,3209 0,3187 0,3166 0,3144 

0,7 0,3123 0,3101 0,3079 0,3056 0,3034 0,3011 0,2989 0,2966 0,2943 0,2920 

0,8 0,2897 0,2874 0,2850 0,2827 0,2803 0,2780 0,2756 0,2732 0,2709 0,2685 

0,9 0,2661 0,2637 0,2613 0,2589 0,2565 0,2541 0,2516 0,2492 0,2468 0,2444 

1,0 0,2420 0,2396 0,2371 0,2347 0,2323 0,2299 0,2275 0,2251 0,2227 0,2203 
           

1,1 0,2179 0,2155 0,2131 0,2107 0,2083 0,2059 0,2036 0,2012 0,1989 0,1965 

1,2 0,1942 0,1919 0,1895 0,1872 0,1849 0,1826 0,1804 0,1781 0,1758 0,1736 

1,3 0,1714 0,1691 0,1669 0,1647 0,1626 0,1604 0,1582 0,1561 0,1539 0,1518 

1,4 0,1497 0,1476 0,1456 0,1435 0,1415 0,1394 0,1374 0,1354 0,1334 0,1315 

1,5 0,1295 0,1276 0,1257 0,1238 0,1219 0,1200 0,1182 0,1163 0,1145 0,1127 

1,6 0,1109 0,1092 0,1074 0,1057 0,1040 0,1023 0,1006 0,0989 0,0973 0,0957 

1,7 0,0940 0,0925 0,0909 0,0893 0,0878 0,0863 0,0848 0,0833 0,0818 0,0804 

1,8 0,0790 0,0775 0,0761 0,0748 0,0734 0,0721 0,0707 0,0694 0,0681 0,0669 

1,9 0,0656 0,0644 0,0632 0,0620 0,0608 0,0596 0,0584 0,0573 0,0562 0,0551 

2,0 0,0540 0,0529 0,0519 0,0508 0,0498 0,0488 0,0478 0,0468 0,0459 0,0449 
           

2,1 0,0440 0,0431 0,0422 0,0413 0,0404 0,0396 0,0387 0,0379 0,0371 0,0363 

2,2 0,0355 0,0347 0,0339 0,0332 0,0325 0,0317 0,0310 0,0303 0,0297 0,0290 

2,3 0,0283 0,0277 0,0270 0,0264 0,0258 0,0252 0,0246 0,0241 0,0235 0,0229 

2,4 0,0224 0,0219 0,0213 0,0208 0,0203 0,0198 0,0194 0,0189 0,0184 0,0180 

2,5 0,0175 0,0171 0,0167 0,0163 0,0158 0,0154 0,0151 0,0147 0,0143 0,0139 

2,6 0,0136 0,0132 0,0129 0,0126 0,0122 0,0119 0,0116 0,0113 0,0110 0,0107 

2,7 0,0104 0,0101 0,0099 0,0096 0,0093 0,0091 0,0088 0,0086 0,0084 0,0081 

2,8 0,0079 0,0077 0,0075 0,0073 0,0071 0,0069 0,0067 0,0065 0,0063 0,0061 

2,9 0,0060 0,0058 0,0056 0,0055 0,0053 0,0051 0,0050 0,0048 0,0047 0,0046 

3,0 0,0044 0,0043 0,0042 0,0040 0,0039 0,0038 0,0037 0,0036 0,0035 0,0034 
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Appendix A (the ending) 

 
x 0 1 2 3 4 5 6 7 8 9 

3,1 0,0033 0,0032 0,0031 0,0030 0,0029 0,0028 0,0027 0,0026 0,0025 0,0025 

3,2 0,0024 0,0023 0,0022 0,0022 0,0021 0,0020 0,0020 0,0019 0,0018 0,0018 

3,3 0,0017 0,0017 0,0016 0,0016 0,0015 0,0015 0,0014 0,0014 0,0013 0,0013 

3,4 0,0012 0,0012 0,0012 0,0011 0,0011 0,0010 0,0010 0,0010 0,0009 0,0009 

3,5 0,0009 0,0008 0,0008 0,0008 0,0008 0,0007 0,0007 0,0007 0,0007 0,0006 

3,6 0,0006 0,0006 0,0006 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0004 

3,7 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0003 0,0003 0,0003 0,0003 

3,8 0,0003 0,0003 0,0003 0,0003 0,0003 0,0002 0,0002 0,0002 0,0002 0,0002 

3,9 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0001 0,0001 
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Appendix B 

(to be continued) 

Values of Laplace cumulative distribution function   dtex
x t





0

2

2

2

1


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x 0 1 2 3 4 5 6 7 8 9 

0,0 0,0000 0,0040 0,0080 0,0120 0,0160 0,0199 0,0239 0,0279 0,0319 0,0359 

0,1 0,0398 0,0438 0,0478 0,0517 0,0557 0,0596 0,0636 0,0675 0,0714 0,0754 

0,2 0,0793 0,0832 0,0871 0,0910 0,0948 0,0987 0,1026 0,1064 0,1103 0,1141 

0,3 0,1179 0,1217 0,1255 0,1293 0,1331 0,1368 0,1406 0,1443 0,1480 0,1517 

0,4 0,1554 0,1591 0,1628 0,1664 0,1700 0,1736 0,1772 0,1808 0,1844 0,1879 

0,5 0,1915 0,1950 0,1985 0,2019 0,2054 0,2088 0,2123 0,2157 0,2190 0,2224 

0,6 0,2258 0,2291 0,2324 0,2356 0,2389 0,2422 0,2454 0,2486 0,2518 0,2549 

0,7 0,2580 0,2612 0,2642 0,2673 0,2704 0,2734 0,2764 0,2794 0,2823 0,2852 

0,8 0,2881 0,2910 0,2939 0,2967 0,2996 0,3023 0,3051 0,3078 0,3106 0,3133 

0,9 0,3159 0,3186 0,3212 0,3238 0,3264 0,3289 0,3315 0,3340 0,3365 0,3389 

1,0 0,3413 0,3438 0,3461 0,3485 0,3508 0,3531 0,3554 0,3577 0,3599 0,3621 

           

1,1 0,3643 0,3665 0,3686 0,3708 0,3729 0,3749 0,3770 0,3790 0,3810 0,3830 

1,2 0,3849 0,3869 0,3888 0,3906 0,3925 0,3944 0,3962 0,3980 0,3997 0,4015 

1,3 0,4032 0,1049 0,4066 0,4082 0,4099 0,4115 0,4131 0,4147 0,4162 0,4177 

1,4 0,4192 0,4207 0,4222 0,4236 0,4251 0,4265 0,4274 0,4292 0,4306 0,4319 

1,5 0,4332 0,4345 0,4357 0,4370 0,4382 0,4394 0,4406 0,4418 0,4430 0,4441 

1,6 0,4452 0,4463 0,4474 0,4484 0,4495 0,4505 0,4515 0,4525 0,4535 0,4545 

1,7 0,4554 0,4564 0,4573 0,4582 0,4591 0,4599 0,4608 0,4616 0,4625 0,4633 

1,8 0,4641 0,4648 0,4656 0,4664 0,4671 0,4678 0,4686 0,4693 0,4700 0,4706 

1,9 0,4713 0,4719 0,4726 0,4732 0,4738 0,4744 0,4750 0,4756 0,4762 0,4757 

2,0 0,4772 0,4778 0,4783 0,4788 0,4796 0,4798 0,4803 0,4808 0,48Ї2 0,4817 

           

2,1 0,4821 0,4826 0,4830 0,4834 0,4838 0,4842 0,4846 0,4850 0,4854 0,4857 

2,2 0,4861 0,4864 0,4868 0,4871 0,4874 0,4878 0,4881 0,4884 0,4887 0,4890 

2,3 0,4893 0,4896 0,4898 0,4901 0,4903 0,4906 0,4909 0,4911 0,4913 0,4916 

2,4 0,4918 0,4920 0,4922 0,4924 0,4927 0,4929 0,4930 0,1932 0,4934 0,4936 

2,5 0,4938 0,4940 0,4941 0,4943 0,4945 0,4946 0,4948 0,4949 0,4951 0,4952 

2,6 0,4953 0,4955 0,4956 0,4957 0,4958 0,4960 0,4961 0,4962 0,4963 0,4964 

2,7 0,4965 0,4966 0,4967 0,4968 0,4969 0,4970 0,4971 0,4972 0,4973 0,4973 

2,8 0,4974 0,4975 0,4976 0,4977 0,4977 0,4978 0,4979 0,4980 0,4980 0,4981 

2,9 0,4981 0,4982 0,4982 0,4983 0,4984 0,4984 0,4985 0,4985 0,4986 0,4986 

3,0 0,4986 0,4986 0,4987 0,4987 0,4988 0,4988 0,4988 0,4989 0,4989 0,4990 
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x 0 1 2 3 4 5 6 7 8 9 

3,1 0,4990 0,4990 0,4991 0,4991 0,4991 0,4992 0,4992 0,4992 0,4992 0,4993 

3,2 0,4993 0,4993 0,4993 0,4994 0,4994 0,4994 0,4994 0,4994 0,4995 0,4995 

3,3 0,4995 0,4995 0,4995 0,4996 0,4996 0,4996 0,4996 0,4996 0,4997 0,4997 

3,4 0,4997 0,4997 0,4997 0,4997 0,4997 0,4998 0,4998 0,4998 0,4998 0,4998 

3,5 0,4998 0,4998 0,4998 0,4998 0,4998 0,4998 0,4998 0,4998 0,4998 0,4998 

3,6 0,4998 0,4998 0,4998 0,4998 0,4998 0,4998 0,4999 0,4999 0,4999 0,4999 

3,7 0,4999 0,4999 0,4999 0,4999 0,4999 0,4999 0,4999 0,4999 0,4999 0,4999 

3,8 0,4999 0,4999 0,4999 0,4999 0,4999 0,5000 0,5000 0,5000 0,5000 0,5000 

3,9 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 
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