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Introduction

Probability theory is the branch of mathematics which studies proper-
ties, laws and the analysis of mass random phenomena. The basic objects of
probability theory are random variables, stochastic process and random
events. In practice we often deal with random events, i.e. with events which
can occur or can’t occur under definite conditions which can’t be analyzed by
direct computations. Analysis of quantitative laws which can be described by
mass random phenomena is the subject of probability theory.

Probability theory plays an important role in everyday life in economics,
in business, in trade on financial markets, in risk assessment and many other
areas where statistics is applied to the real world.

Owing to the study of probability theory a student is obliged to receive
the basic knowledge of this part and use skills of applying the elements of
probability theory in investigations where probability theory is applied as
an instrument of investigation for forming economic mathematical models of
economic processes and developments. This makes it possible for him to
apply the acquired knowledge and skills for solving many practical problems
of economics and business.

Module 3. Probability theory and mathematical statistics

Theme 24. Basic notions of probability theory

24.1. A stochastic experiment. A subject of probability theory.
A mathematical model of stochastic experiments

Theory of probability is that part of mathematics that aims to provide in-
sight into phenomena that depend on chance or on uncertainty. The most
prevalent use of the theory comes through the frequentists’ interpretation of
probability in terms of the outcomes of repeated experiments, but probability
is also used to provide a measure of subjective beliefs, especially as judged
by one’s willingness to place bets. If we want to predict the chance of some-
thing happening in the future, we use probability.

Let’s consider the fundamental concepts of probability theory.

An experiment is a repeatable process that gives rise to a number of
outcomes.



An outcome is something that follows as a result or consequence.
An event is a collection (or set) of one or more outcomes.
Events are sets and set notation is used to describe them. We use up-

per letters to denote events. They are denoted as A, B, C, ..., A, Ay, ...
The simplest indivisible mutually exclusive outcomes of an experiment
are called elementary events oy, @,, ...

A sample space or a space of elementary events is called the set of
all possible elementary outcomes of an experiment, which we denote by the
symbol Q.

Any subset of Q) is called a random event A (or simply an event A).

Elementary events that belong to A are said to favor A.

An event is certain (or sure) if it always happens.

An event is impossible if it never happens.

Equally likely events are such events that have the equal chance to
happen at an experiment.

Example 24.1. The experiment (tossing a coin once) has 2 outcomes:
head (the first outcome) and tail (the second outcome). The event A is get-

ting "head". For this experiment the sample space is QQ = {head, tail}.

The probability of an event is the chance that the event will occur as a
result of an experiment.

Where outcomes are equally likely the probability of an event is the num-
ber of outcomes in the event divided by the total number of possible out-
comes in the sample space.

An impossible event has probability 0 and an event that is certain has
probability 1.

When experiments or observations are made, various outcomes are
possible even under the same conditions.

Probability theory deals with regularity of random outcomes of certain
results with respect to given observations (in probability theory observations
are also called experiments, since they have certain outcomes). Suppose, at
least theoretically, that these experiments can be repeated arbitrarily many
times under the same circumstances; namely, this discipline deals with the
statistics of mass phenomena. The term stochastics is used for the mathe-
matical handling of random phenomena.
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24.2. An algebra of random events. Probabilities in a discrete space
of elementary events

The mathematics of probability is expressed most naturally in terms of
sets, therefore, let’s consider basic operations with events.

The intersection C=ANB=A-B of events A and B is the event
that both A and B occur. The elementary outcomes of the intersection A-B
are the elementary outcomes that simultaneously belongto A and B.

Example 24.2. If A={,2,3} and B={1,35} are given, then
C=AnB={,3}
When events A and B have no outcomes in common (AN B =@ (this

symbol @ is called the empty set)), they are mutually exclusive (or incom-
patible events).

Example 24.3. If events A= {1, 2} and B= {3, 5} are given, then
C=ANB=@, because events A and B have no outcomes in common.

When events A and B have common outcomes (AN B #d), they are
not mutually exclusive (or compatible events).

Example 24.4. In the experiment of throwing a dice the event A of get-

ting an odd number (A:{l, 3, 5}) and the event B of getting a number
greater than 3 (B = {4, S, 6}) are not mutually exclusive, i.e. they are compat-

ible, because AN B = {5} @.

The union C=AUB=A+B of events A and B is the event that at
least one of the events A or B occurs. The elementary outcomes of the
union A+ B are the elementary outcomes that belong to at least one of the
events A and B.

Example 24.5. If events A:{l, 2,3 4, 5} and B = {2, 4, 6} are given,
then C=AUB={,2,34,5,6}.

Two events A and A are said to be opposite (complementary) if they

simultaneously satisfy the following conditions: AUA=Q and ANA=0.
The difference C = A\B=A—B of events A and B is the event that
A occurs and B does not occur. The elementary outcomes of the difference
A\ B are the elementary outcomes of A that do not belong to B.
Example 24.6. If events A= {1, 2,3, 4, 5} and B = {1, 3, 5} are given,

then C = A\B=1{2, 4}.



An event A implies an event B (A< B) if B occurs in each realiza-
tion of an experiment for which A occurs.

Example 24.7. If events A:{l, 2,3, 4, 5} and B:{l, 3, 5} are given,
then the event A implies the event B or A B.
Events A and B are said to be equivalent (A=B) if A implies B

(AcB)and B implies A (Bc A), i.e., if, for each realization of an experi-
ment, both events A and B occur or do not occur simultaneously.

Example 24.8. If events A=1{1,2,3} and B={3,2,1} are given, then
events A and B are equivalent or A=B.

Venn diagrams are useful for visualizing the relationships among sets
or events (fig. 24.1).

AnB AuRB A I3

(a) (b) ()
Fig. 24.1. The intersection AN B (a), the union AUB (b)
and the difference A\ B (c) of events A and B

The axiomatic definition of probability. Let a space of elementary
events (a sample space) €2 be given and such single number P(A) (the
probability of an event A) corresponds to each event Ac Q2, that:

1) P(A)>0;

2) for each pair of mutually exclusive events A, B — ) the equality
P(AUB)=P(A)+ P(B) takes place;

3) P(QQ)=1.

Then we say, that the probability is defined on events of €2, and the
number P(A) is called the probability of an event A .

Let’'s suppose that Q:{a)l, @, ..., a)n} is a finite space, where oy,
wy, ..., W, are the simplest indivisible mutually exclusive outcomes of an ex-

periment or they are called elementary events. To each elementary event
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; eQ(i =12,.., n) there is a corresponding number p(a)i), called the
probability of the elementary event ;. Thus a real function satisfying the fol-

lowing two conditions is defined on the space €2:
1) nonnegativity condition: p(a;)>0 forany a5 € Q(i =12, ..., n);

n
2) normalization condition: )’ p(a)i ):1.
i=1
The probability P(A) of an event A for any set Ac Q is defined to be
the sum of probabilities of the elementary events that form A, i.e.

P(A)= 2 p(e).

@A

This pair (a space of elementary events 2 and a real function P) thus
defined is called a finite discrete probability space.

24.3. Rules of a sum of incompatible events and a product
of compatible events. Inclusion-exclusion principle

At solving problems of probability theory one can use the following
rules:

1. The rule of sum is an intuitive principle stating that if there are a
possible outcomes for an event A (or ways to do something) and b possible
outcomes for another event B (or ways to do another thing) and two events
can’t both occur (or the two things can’t be done) (A and B are mutually ex-
clusive or incompatible events) then there are a+b total possible outcomes
for the events A and B (or total ways to do one of the things); formally, the
sum of sizes of two incompatible sets is equal to the size of their union, i.e.
IA+|B|=|AUB|.

Example 24.9. A woman has decided to shop at one store today, either
in the north part of town or the south part of town. If she visits the north part
of town, she will either shop at a mall, a furniture store, or a jewelry store (3

ways). If she visits the south part of town then she will either shop at a cloth-
ing store or a shoe store (2 ways). Let A be the woman visiting the north part

of town and B be the woman visiting the south part of town, i.e. \A\ =3 and

B|=2.



Thus there are |AU B|=|A/+|B|=3+2=5 possible shops the woman

could end up shopping at today.

2. The rule of product is another intuitive principle stating that if there
are a possible outcomes for an event A (or ways of doing something) and b
possible outcomes for another event B (or ways of doing another thing) and
two events can both occur (or the two things can be done) (A and B are not
mutually exclusive or compatible events) then there are a-b total ways of

performing both things, i.e. [ANB|=|A-|B].
Example 24.10. When we decide to order pizza, we must first choose
the type of crust: thin or deep dish (2 choices or W =2). Next, we choose

the topping: cheese, pepperoni, or sausage (3 choices or ‘B‘ =3). Using the

rule of product, you know that there are |[ANB|=|A-|B|=2-3=6 possible

combinations of ordering a pizza.

3. Inclusion-exclusion principle or the rule of inclusion and exclusion:
the inclusion-exclusion principle relates to the size of the union of multiple
sets, the size of each set and the size of each possible intersection of the
sets. The smallest example is when there are two sets: the number of ele-
ments in the union of the events A and B is equal to the sum of the ele-
ments in the events A and B minus the number of elements in their inter-

section, i.e. |AU B|=|A/+|B|-|ANB|.

Example 24.11. 35 voters were queried about their opinions regarding
two referendums. 14 supported referendum 1 and 26 supported referendum
2. How many voters supported both, assuming that every voter supported ei-

ther referendum 1 or referendum 2 or both?
Solution. Let A be voters who supported referendum 1 and B be vo-

ters who supported referendum 2. Then we have |[AUB|=35, |A=14 and

B|=26. Using the inclusion-exclusion principle we obtain:
IAUB|=|A+|B—-|ANB| or IAnB|=|A+|B|-|AUB|
AnB|=14+26-35 or  |AnB|=5.

Recommended bibliography: [1; 2; 4; 5; 7; 10; 11].



Theme 25. A classical definition of a probability and elements
of a combinatory analysis. Statistical and geometrical
definitions of a probability

25.1. A classical definition of a probability

Let a space of elementary events (2 be given and this space consists
of n equally likely elementary outcomes (i.e. total number of outcomes) of
the experiment, among which there are m outcomes, favorable for
an event A (i.e. number of outcomes an event A can happen), and QQ c A.
Then the number:

m

P(A)= . (25.1)

is called the probability of an event A.

As all events have probabilities between impossible (0) and certain (1),
then probabilities are usually written as a fraction, a decimal or sometimes as
a percentage. In this lecture probabilities will be written as fractions or deci-
mals.

The probability is the non-dimensional quantity. It can be measured in

percent from 0 to 100. For example, P(A4) = % =0.4=40%.

Example 25.1. Suppose the event A we are going to consider is rolling
a die once and obtaining a 3. The die could land in a total of six different
ways. We say that the total number n of outcomes of rolling the die is six,
which means there are six ways it could land. The number m of ways of ob-
taining the particular outcome of A is one.

1
We can apply the formula (25.1) and find: P(A): re

When we roll a die it has an equal chance of landing on any of the six
numbers 1, 2, 3, 4, 5, or 6. These events are called equally likely events.

25.2. A basic notion of a combinatorial analysis

We often compose new sets, systems or sequences from the elements
of a given set in a certain way. Depending on the way we do it, we get the no-
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tion of permutation, combination and arrangement. The basic problem of
combinatorics is to determine how many different choices or arrangements
are possible with the given elements (for instance, letters of an alphabet,
books of a library, cars on a parking, etc.).

25.2.1. Collection of formulas of combinatorics without repeti-
tions. A permutation without repetitions is called the number of different
permutations of n different elements:

Py=1-2-...-n=n!

Example 25.2. In a classroom 16 students are seated on 16 places.
There are Pjg =16! different possible permutations.
An arrangement without repetitions is called an ordering of k ele-

ments selected from n different ones, i.e. arrangements are combinations
considering the order:

Example 25.3. How many different ways are there to choose a chair-
man, his deputy, and a first and a second assistant for them from 30 patrtici-

I
30 _ 657720,
(30-4)!

A combination without repetitions is called a choice of k elements
from n different elements without considering the order of them:

pants at an election meeting? This answer is Aélo =

k n!
Ch=——<
" ki(n—k)
4 30! I
Example 25.4. There are Cgy =-————~ =27405 possibilities to
4(30 - 4)

choose an electoral board of 4 persons from 30 participants.

Example 25.5. 7 tickets were drawn among 17 students including 8
girls. What is the probability that there are 4 girls among ticket owners?
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Solution. The number of possible ways of distributing 7 tickets among
17 students is equal to the number of combinations of 17 elements taken 7 at

a time, i.e. C177. The number of the selection of 4 girls from 8 is Cg. Each
group of 4 can be connected with each group of 3 of 9 boys. The number of

such groups of 3 is CS’. The number of results of distributing 7 tickets includ-

ing 4 tickets for girls and 3 for boys, is Cg- Cg. Then the probability is:

4 ~3

Cg-C
P(4) =—— 9
C17

25.2.2. Collection of the formulas of combinatorics with repeti-
tions. If for different elements k out of n elements with replacement, no
subsequent ordering is performed (i.e., each of the n elements can occur 1,
2, ..., or k times in any combination), then one speaks of combinations with

. —k . L : "
repetitions. The number Cp of all distinct combinations with repetitions of n
elements taken K at a time is given by the formula:

Cn= Cn+k—1'
Example 25.6. Consider the set of elements 1, 2, 3 (n=3). Take
— 41
k =2 elements, there are C% = C§+2_1 = CL% = m =6 combinations

with repetitions [(1, 2), (1, 3),(2, 3),(1, 1).(2, 2),(3, 3)].
If for different elements k out of n elements with replacement, the
chosen elements are ordered in some way, then one speaks of arrange-

. .. —k - :
ments with repetitions. The number Ap of distinct arrangements with repe-
titions of N elements taken K at a time is given by the formula:

ﬂh:nk.

Example 25.7. Consider the set of elements 1, 2, 3 (n=3). Take

k =2 elements, there are Kg =3=9 arrangements with repetitions [(1 2),
(£.3).(2,3).(2.1). (3 1).(3,2).L1)(2.2).(3 3)]

11



Let’s suppose that a set of n elements contains k distinct elements, of
which the first occurs n, times, the second occurs n, times, ..., and the k -th
occurs n, times, n, +n, +...+ N, =N. Permutations of N elements of this
set are called permutations with repetitions on n elements. The number
P, (nl,nz,...,nk) of permutations with repetitions on n elements is given by
the formula:

n!
P.(n,n,,...,n. )= .
ntn,k...-n.!

Example 25.8. If there are two letters a and one letter b, the number
of permutations with repetitions out of 3 elements and composition of letters

2,1 equals Py(2,1)= % =3 [(a, a,b),(a,b, a),(b, a a)].

25.3. A geometric definition of a probability. A statistical definition
of a probability and its properties

A statistical definition of a probability of an event A. Let A be an
event belonging to the sample space Q, i.e. A>Q, of an experiment. If the

event A occurred n, times while we repeated the experiment n times, then

: Np . :
N, is called the frequency, and —A s called the relative frequency of the
n

event A.
A geometric definition of a probability of an event A. Let 2 be a set
of a positive finite measure ,u(Q) and consist of all measurable (i.e. having a

measure) subsets A > ). The geometric probability of an event A is de-
fined to be ratio of the measure of A to that of Q2, i.e.

P(A)z%.

The notion of geometric probability is not invariant under transfor-
mations of the sample space (2 and depends on how the measure y(A) 5

12



introduced. As measures z(A) and 1(Q) we can use different geometric

measures, for example, lengths, areas or volumes.
Example 25.9. A point is randomly thrown into a disk of radius R =1.
Find the probability of the event that the point lands in the disk of radius

1 ,
r= E centered at the same point.

Solution. Let A be the event that the point lands in the smaller disk.
We find the probability P(A) as the ratio of the area of the smaller disk
to that of the larger disk:

a2 2 (V2) 1

P(A)= S
(#) R? R? 12 4

25.4. Different types of events. Properties of probability

An event A is said to be impossible if it cannot occur for any realiza-
tion of the experiment. Obviously, the impossible event does not contain any
elementary outcome and hence should be denoted by the symbol Q. Its

probability is zero, i.e. P(A)=0.
Example 25.10. Let’s roll a die and obtain a score of 7 (the event A).
It's an impossible event, then P(A)=0.

Property 1. The probability of an impossible event is 0, i.e. P(A) =0.

An event A is said to be sure if it is equivalent to the space of elemen-
tary events Q, i.e. A=), or it happens with probability 1.

Example 25.11. Let’s roll dice and obtain a score less than 13 (the
event A). It's a sure event or a space of elementary events (2, because it

consists of all possible outcomes of Q. Then P(A)=1.

Property 2. The probability of a sure (certain) eventis 1, i.e. P(A):l.

Property 3. The probability of a space of elementary events €2 is 1, i.e.
P(Q)=1.

Property 4. All probabilities that lie between zero and one are inclusive,
i.e. 0<P(A)<1.

The event that A doesn’t occur is called the complement of A, or the
complementary event, and is denoted by A. The elementary outcomes of

A are the elementary outcomes that don’t belong to the event A.
13



Property 5. The probability of the event A opposite to the event A is
equal to P(z\):l— P(A).

From this property we can obtain that P(A)+ P(ﬂ):l for complemen-
tary events A and A and explain them in the next example.

Example 25.12. Helen rolls a die once. What is the probability she rolls
an even number or an odd number?

Solution. The event of rolling an even number (A) and the event of roll-
ing an odd number (B) are mutually exclusive events, because they both

cannot happen at the same time, so we add the probabilities. In addition,
these two events make up all the possible outcomes, so they are comple-

mentary events, i.e. B is A. Let's write: P(A)+P(B)=§+§:1
The events A and B are called equally likely events, if P(A)=P(B).
Property 6. Probabilities of equally likely events A and B are equal, i.e.

P(A)=P(B).
Example 25.13. When we roll a die it has an equal chance % of land-

ing on any of the six numbers 1, 2, 3, 4, 5, or 6. These events are called
equally likely events.

Property 7. Nonnegativity: P(A)Z 0 forany Ac Q.
Property 8. For each A < Q) the inequality P(A)Sl takes place.
Property 9. If an event A implies B, i.e. Ac B, then P(A)<P(B).

25.5. Probability addition theorems

The events are called compatible (mutually exclusive) if they can oc-
cur together in the same experiment.
The events are called incompatible (not mutually exclusive) if they
cannot occur together in the same experiment.
Probability addition theorem for incompatible events. The probability
of realization of at least one of two events A and B is given by the formula:

P(A+B)=P(Aor B)=P(A)+P(B), (25.2)
where A and B are incompatible events.
14



The probability of such events are explained in the following example.

Example 25.14. Ann rolls a die once. a) What is the probability she rolls
a 3 and a 6? b) What is the probability she rolls a 3 or a 6?

Solution. a) When one die is rolled, the event A of rolling a 3 and
the event B of rolling a 6 are events that cannot both happen at the same
time, and are called mutually exclusive events. So the probability of rolling a
3 and a 6 is impossible on one roll of a die, and equal to zero, i.e.
P(AandB) =0.

b) The probability of rolling a 3 (A) or a 6 (B) is also a mutually exclu-
sive event and is calculated by the formula (25.2):

P(A+B)=P(A)+P(B) :%+%=§=

Probability addition theorem for compatible events. The probability
of realization of at least one of two events A and B is given by the formula

P(A+B)=P(Aor B) = P(A) + P(B)— P(ANB), (25.3)

where A and B are compatible events.

Example 25.15. Ann rolls a die once. What is the probability she rolls
a prime number or an odd number?

Solution. When one die is rolled, the event A of rolling a prime or the
event B of rolling an odd number are events that can both happen at the
same time, and they are compatible events. Then the probability of A or B is
calculated by the formula (25.3).

3 3

P(B) =2

We have A=1{2,3,5}, B=1{,3,5} and obtain P(A) = G c

We find AnB=1{3,5}, P(An B):g and use the formula (25.3):

3 3 2 4 2
PIA+B)=P(A)+PB)-PIANB)=—+———=—=—.
(A+8)=P(a)+ P(B)- HAnB)=3.3 222

Recommended bibliography: [2; 4; 6; 7; 10; 11].
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Theme 26. Conditional probability and a notion of an event
independence. Formulas of a total probability and Bayes

26.1. Conditional probability and theorem of a product
for dependent events. Theorem of a product for independent events

The events are called independent if the occurrence of one of them
does not change the probability of the occurrence of the other one.

The events are called dependent if the probability of each of them is
changed in connection with the occurrence or nonoccurrence of the other
one.

Multiplication theorem for independent events. When the outcome of
one event has no effect on the outcome of another event, we say that the two
events are independent events. To obtain the probability of independent
events we multiply the probabilities of the separate events, i.e.

P(A-B)=P(Aand B)=P(A)- P(B), (26.1)

where A and B are independent events

Example 26.1. A coin is tossed and a die is rolled. What is the probabil-
ity of obtaining a head and a prime number?

Solution. The result of tossing a coin cannot possibly affect the outcome
of rolling a die. In other words, if the coin landed as a head, it would not af-
fect the way the die would land. Then the outcomes are independent events.

1 1
The probability of A (tossing a head) is > i.e. P(A): > and the prob-

ability of B (rolling a prime number with a die) is g ie. P(B):g, because

there are three numbers 2, 3, and 5 that are prime. Let's use the formu-
13 1
la (3.1): PIA-B)=P(A)-P(B)==-—=—.
a(3.1): P(A-B)=P(A)-PB)=_- =
Multiplication theorem for dependent events. If A and B are de-
pendent events, then:
P(A-B)=P(Aand B)=P(A)- P(B|A)= P(B)- P(AB), (26.2)

where P(B\A) or Pa(B) is called the conditional probability of the event B
16



given the event A (it means the probability that the event B will occur given
that the event A has already occurred) and P(A‘B) is the conditional pro-

bability of the event A given the event B.

Example 26.2. There are 3 nonstandard electric bulbs among 50 elec-
tric ones. What is the probability that 2 electric bulbs taken at a time are non-
standard?

Solution. The probability of the event A that the first bulb is nonstand-

3
ard equals % The probability of the second bulb is nonstandard (the event

2
B) on conditions that the first bulb is nonstandard (the event A) equals 4—9

because the total number of bulbs and the number of nonstandard bulbs de-
creased by 1.
According to the formula (26.2) we have

P(A-B)=P(A)- P(B|A)= 5%.4% ~0.0024.

Two random events A and B are said to be independent if the condi-
tional probability of A given B coincides with the unconditional probability of

A.ie. P(AB)=P(A).
A conditional probability from the formula (26.2) is expressed as:
P(A-B)
P(A)

Example 26.3. The probability that it is Friday and that a student is ab-
sent is 0.03. Since there are 5 school days in a week, the probability that it is
Friday is 0.2. What is the probability that a student is absent given that today
is Friday?

Solution. Let’s denote that it is Friday as the event A and a student is
absent as the event B. Then the event that a student is absent given that to-

day is Friday is denoted by B|A. Let’s find P(B\A) using the formula (26.3):

P(B|A)= (26.3)

P(B|A)=

P(A-B)_0.03 _ 0.15.
P(A) 0.2
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26.2. A complete group of events

Events Ay, Ay, ..., A, are called pairwise independent if every possi-
ble pair of these events is independent, i.e. P(Ai mAj): P(A)- P(Aj) for
any 1, J (1#])).

One says that events A, Ao, ..., Ay form a complete group of pair-
wise incompatible events (or mutually exclusive), if exactly one of them nec-

essarily occurs for each realization of the experiment and no other event can
occur.

If events Ay, Ay, ..., Ay form a complete group of pairwise incompati-
ble events, then P(A))+P(Ay)+...+P(A,)=1.

For example, two opposite events A and A form a complete group of
incompatible events.

Example 26.4. Let the probability that the shooter scores 10 points,
when hitting the target, equals 0.4, 9 points — 0.2, 8 points — 0.2, 7 points —
0.1, 6 points and less — 0.1. What is the probability that the shooter scores no
less then 9 points by one shot?

Solution. Let A; be the shooter scoring 10 points, Ay be the shooter
scoring 9 points, Ag be the shooter scoring 8 points, A4 be the shooter scor-

ing 7 points, Ag be the shooter scoring 6 points and less.
These events form the complete group of pairwise incompatible events,

e. P(A)+P(Ag)+P(Ag)+ P(Ay)+P(As)=1.

Let C be the shooter scoring no less then 9 points by one short.
The required event will occur (mark it C) if the shooter scores either 9

(the event A,) or 10 points (the event A). The events A, and A are in-
compatible. Thus, P(C)=P(A )+ P(A,)=0.2+0.4=0.6.

26.3. A notion of a pairwise independence of random events.
An independence in a totality

A pairwise independent collection of events Ay, Ay, ..., A, is called

a set of events any two of which are independent.
Any collection of mutually independent events is pairwise independent.
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Let events A, Ay, ..., A, be independent, A is at least one of n

events occurs in the experiment. Then A is this event that no one of n

events occurs in the experiment, i.e. A=A - A, -...- A,. The events A and

A form a complete group of incompatible events, therefore,

P(A)=1-P(A)=1-P(A )-P(A, )-...P(A, ). (26.4)

This formula (26.4) is called the probability that at least one of n
events occurs.

Lets denote P(A)=py, P(E):l— PL=0 - P(A)=pn,
P(E):l— Ph =0, and transform the formula (26.4):

P(A)=1-P(A, )-P(A; )-...P(A, )=1-q; -0y -...-q. (26.5)

Example 26.5. Three students are going to take the exam. The pro-
bability that the first student passes it equals 0.9, the second one is 0.75,
the third one is 0.6. What is the probability that at least one of three students
passes the exam?

Solution. Let A; be the event that the first student passes the exam,

A, be the event that the second student passes the exam, A; be the event
that the third one does it.
Each student can pass the exam or not. Then P(A)=p; =0.9,

P(E):l— =0, =0.1, P(Ay)=p, =0.75, P(Kz)zl— p, =0, =0.25,
P(AS): P3 =0.6, P(AS):]-_ P3 =03 =04.
Events A, Ay, Ay are independent. If the event A is at least one of

three students passes the exam, then the complementary event A (not A)is

no student passes the exam (it means A, - A, - Ag).
Let’s use the formula (26.5) and obtain:

P(A)=1-0;-0,-03=1-0.1-0.25-0.4 =1-0.01=0.99.

If all events A, Ay, ..., A, have equal probability, i.e. P(A)=P(A;)=
—...=P(A,)=p, then P(A)=P(A;)=...=P(A,)=1— p=(q and from the
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formula (26.5) we have:
P(A)=1-q". (26.6)

Let’s define the necessary number of trials (n) with the given reliability
P no less than P(A), i.e. P(A)> P, using the formula (26.6):

P(A)=1-q">P or 1-(1-p)" =P
or
@-p) <1-P.

Let’s take a natural logarithm of both parts of this inequality:
n-In(l-p)<in(l-P).

Hence
In(1-P)
In@1-p)

IA

n

26.4. The formula of a total probability

Let’s suppose that a complete group of pairwise incompatible events
Hy,H,,..., H, is given and the unconditional probabilites P(H,), P(H,),

..,P(H,), as well as the conditional probabilities P(AH,), P(AH,),...,

P(A‘Hn) of an event A, are known. Then the probability of A can be deter-
mined by the total probability formula

n
P(A)= Y P(H;)- P(AH;). (26.7)
k=1
Each of the events Hy, H,, ..., H, is called hypothesis.

P(Hi) is called a priori probability (premature probability).

Example 26.6. Three machines produce the same type of product in
a factory. The first one gives 200 articles, the second one does 300 articles
and the third one does 500 articles. It is known that the first machine produc-
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es 1 % of defective articles, the second one does 2 %, the third one does
4 %. What is the probability that an article selected randomly from the total
production will be defective?

Solution. Let A be the event that the chosen article is defective.

Let’s consider the following complete group of events (hypotheses): H;
denotes the event that the randomly selected article is made by the first ma-
chine, H, denotes the event that the randomly selected article is made by
the second machine, Hj denotes the event that the randomly selected arti-

cle is made by the third machine.
200 200

Let's find their probabilities: P(H;)= = =0.2,
200 +300+500 1000
300 500
P(H,)="""_=0.3, P(H —05.
(Hz)= 1000 (H3)= 1000

Since events H;, H, and Hj; form the complete group, then
P(H,)+P(H,)+P(H3)=0.2+0.3+0.5=1.
Let’s define conditional probabilities P(NHl), P(NHZ), P(NHP,):

P(AH;)=0.01, P(AH,)=0.02, P(AH;)=0.04.

Here AlH, is a defective article produced by the first machine, AH, is

a defective article produced by the second machine, A‘H3 Is a defective arti-

cle produced by the third machine.
Let’s use the total probability formula (26.7) and find:

P(A)=P(H,)- P(AH)+ P(H,)- P(AH2)+P(Hs)- P(AH; )=
~02-0.01+0.3-0.02+0.5-0.04 = 0.028.

We have 2.8 % of defective articles from the total production.
26.5. Bayes' formula

If it is known that the event A has occurred but it is unknown which of
the events Hq, H,, ..., H,, has occurred, then Bayes' formula is used:
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P(H,|A)= P(Hk)'P(A‘Hk), k=12,...,n (26.8)

P(A)

and P(Hy|A)+P(H,|A)+...+ P(H,|A)=1.

where P(Hi‘A) is called a posteriori probability (final probability).

Example 26.7. Let’s use the condition of example 26.6 and solve the
following problem. It is known that a selected article is defective. What is the
probability that this article was made by the second machine?

Solution. The desired probability of the event HZ\A (the selected article

was made by the second machine under condition that it is known that it is
defective) is determined by Bayes' formula (26.8):

P (HA)= P(Hz)-P(A‘HZ)ZOB-O.OZZEZE
° P(A) 0.028 28 14

Recommended bibliography: [2; 5; 6; 7; 10; 11].

Theme 27. A model of repeated trials of Bernoulli’s scheme.
Theorems of de Moivre—-Laplace and Poisson as investigations
of an asymptotic behavior of binomial distribution

27.1. Repeated independent trials. Bernoulli’s scheme. A distribution
of a number of successes in a set of independent stochastic
experiments. A binomial distribution

Trials in which events occurring in distinct trials are independent are
said to be independent. Here the probability of each event A of the form

A=A A, -...-A is defined as P(A)=P(A)-P(A,)-...-P(A,).

Let independent events occur in N independent trials. In each trial the
event A can occur on can’t occur.

A sequence of n independent trials is also called a Bernoulli scheme.

In this case, some event A occurs with probability p=P(A) (the prob-

ability of "success") and does not occur with probability q= P(ﬂ):l—
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— P(A):l— p (the probability of "failure") in each trial.

If K is the number of occurrences of the event A (the number of "suc-
cesses") in N independent Bernoulli trials, then the probability that A occurs
exactly k times is given by the formula:

P(k)="P,(k)=Cgp g™, (27.1)

n!
where Crlf =
ki{(n—k)
This relation is called the Bernoulli formula (binomial distribution).
The probability that the event occurs at least m times in n independent

trials is calculated by the formula:

is a combination of n things taken Kk at a time.

k=m

The probability that the event occurs at least once in n independent tri-
als is calculated by the formula:

P.(k>1)=1-q".

The probability that the event A occurs no less than k; and no more

than k, times (k; <Kk,) satisfies the relation:

Py(ky <k <ko)=Py(ky)+ Py(kg +1)+...+ Py(ko) =

Clipkig"™ 4y cke pkeghFe,

Example 27.1. The probability of a train’s arrival at a station on time is
equal to 0.8. What is the probability that out of 4 expecting trains 2 trains will
arrive on time?

Solution. Let A be a train arriving at a station on time, P(A)=p=0.8.

Then A is a train that doesn't arrive at a station on time and
q=P(A)=1-P(A)=1-0.8=0.2. Here n=4<30, k =2.
According to Bernoulli formula (27.1) we have
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|
Py(2)=C2.082.0242 - * _.082.022-6.0.64-0.04=0.1536.
21(4-2)

27.2. The most probable number of successes and its probability

The number kof occurrences of the event A in the independent trials
is called the most probable number if the probability of the event occuring
such number K, times is maximum (the largest value).

Let the event A occur with probability p=P(A) and do not occur with
probability (= P(K):l— P(A)zl— p in the trial. Then the most probable

number Kg is defined by inequality:
np—q<ky<np+p, (27.2)

where K is a whole number.

Example 27.2. The probability of finding a mistake on a book page is
equal to 0.002. 500 pages are checked. Find the most probable number of
pages with mistakes.

Solution. Let A be finding a mistake on a book page, P(A)= p =0.002.

Then A is lack of a mistake on a book page and
q=P(A)=1-P(A)=1-0.002 =0.998.
According to (27.2) we have
500-0.002 —0.998 <k, <500-0.002 + 0.002

or
1-0.998 <k, <1+0.002

or
0.002 < ky <1.002.

Then ky =1.

27.3. Approximate methods of calculating binomial probabilities
and their accuracy. Limit theorems for Bernoulli process

It is very difficult to use Bernoulli's formula for large n and K. In this
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case, one has to use approximate formulas for calculating P, (k) with desired
accuracy.

27.3.1. Local theorem of de Moivre—=Laplace. Suppose that the num-
ber of independent trials increases unboundedly (N —> oo or N approaches
infinity) and the probability p=const, 0< p <1, then the probability P,(k)

that A occurs exactly K times out of n satisfies the limit relation

Pa(k)~—— (p(k_npj, (27.3)

Jnpg “\ Jnpg

where the limit expression gp(x) is Laplace differential function or the proba-

X2

bility density of the standard normal distribution, i.e. (p(x): e 2.

1
J2r
This function is even, i.e. go(— X): gp(x).
The function value (X < 4) is defined by Laplace differential function ta-
ble (table 1, appendix A). For the values X >4 go(x) ~0.

Example 27.3. The probability of the birth of a boy is equal to 0.51.
Find the probability that among 200 newborns there will be the same number
of boys and girls.

Solution. Let A be the birth of a boy, P(A)= p=0.51. Then A is the
birth of a girl and P(ﬂ):l— P(A)=1-0.51=0.49. Here n=200, k =100.

According to the local theorem of de Moivre—=Laplace (27.3) we have

1 100-200-0.51 —0.28
P20 (100) ~ (0( j _ ol )

J200-0.51-0.49 "\ ~/200-051-049 )  7.07

The function @(x) is even, then we obtain ¢(—0.28)= ¢(0.28). Let’s
apply Laplace differential function table (appendixA) and have
¢(0.28) =0.3836. Let's substitute this value into the previous formula and
obtain:

Py (100) ~ p(-0.28) _p(0.28) _0.3836 _ oo

7.07 7.07 7.07
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27.3.2. Integral theorem of de Moivre-Laplace. Let’s suppose that
N — oo and the probability p=const, 0< p <1, then the probability P, (k)

that A occurs no less than k; and no more than ky times (k; <k,) satisfies
the limit relation:

Pn(klskskz)ztb(kz_npj—q{kl_npj, (27.4)

Jopg ) /npg

where the limit expression CD(X) Is Laplace integral function or the cumulative

distribution function of the standard normal distribution, i.e.:

X2

d(x) e 2dx.

1
NG
This function is odd, i.e. ®(—x)=—®(x).
The function value (X < 4) is defined by Laplace integral function table
(table 2, appendix B). For values X >4 CD(X)z 0.5.

Example 27.4. The probability of the birth of a girl is equal to 0.49. Find
the probability that among 200 newborns there will be from 95 to 110 girls.

Solution. Let A be the birth of a girl, P(A)= p=0.49. Then A is the
birth of a boy and g = P(A)=1—P(A)=1-0.49=0.51.

Here n=200, k; =95, k, =110,

According to integral theorem of de Moivre—Laplace (27.4) we have
110-200-0.49 j_q)( 95-200-0.49 j
/200-0.49-0.51 /200-0.49-0.51

= cp(%j ~ cp(%j = ®(1.70)— d(-0.42).

The function ®(x) is odd, then ®(—0.42)=-d(0.42). Let's apply La-
place integral function table (appendix B) and have CI)(1.70):O.4554 and

O — X

®(0.42)=0.1628. Let's substitute these values into the previous formula
and obtain:
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P00 (95 <k <110) = 0.4554 +0.1628 = 0.6182.

27.3.3. Poisson theorem. If the number of independent trials increases
unboundedly (N — o) and the probability p simultaneously decays (p — 0)

so that their product np is a constant (NP = A =const), then the probability

P, (k) satisfies the limit relation:

X

Pak)~7 e

(27.5)
The probability that the event A occurs no less than k; and no more

than k, times (k; <Kk,) satisfies the relation:

k » ke A

Pn(kl < k < kz): Pn(k1)+ Pn(kl +1)+...+ Pn(kz):ﬁe +."+Fe_ .
1- 2!

Example 27.5. The probability of finding a mistake on a book page is
equal to 0.002. 1000 pages are checked. Find the probability that there is a
mistake on 3 pages.

Solution. Let A be finding a mistake on a book page, P(A): p=
=0.002. Then A is lack of a mistake on a book page and Q= P(z\):

=1-P(A)=1-0.002=0.998. Here n=1000, k=3. Then A=1000-
-0.002=2.
According to Poisson formula (27.5) we have:

3 3
Plooo(3) = %e‘ﬂ = %e‘z = g -(2.72) % ~0.1802.

27.4. Probability of deviation of relative frequency from the probability

Let some event A occur with probability p=P(A), 0< p <1 and don't

occur with probability ¢ = P(K)zl— P(A)=1-p in each of n independent
trials.
It is necessary to define the probability of deviation of relative frequency

27



from the constant probability, i.e. find the probability of inequality <eg.

m
—-p
n
Then the probability of an absolute value of deviation of relative frequency

n
from its constant probability less than or equal to ¢ equals 2@[5 /—] le.:
Pq

(2 qu{\/%]

—-p
n
m
where — is a relative frequency, p is the constant probability of A, n is the
n

number of trials, & is an accuracy; CD(X) Is Laplace integral function (appen-
dix B).

Example 27.6. For defining the level of students’ knowledge in
the given subject 100 students are given tests. The probability of carrying out
a test excellently is 0.1. Find

a) the probability P that the relative frequency deviates from the pro-
bability p by the value & =0.01;

b) the accuracy &, which probability of deviation of relative frequency
from the probability p is P =0.95;

c) how many students it is necessary to take that with the accuracy
£ =0.02 the probability of deviation of relative frequency from the probability
p willbe P=0.9.

m
—=p

Solution. a) Let's find P(
n

ng. If p=0.1, then q=1-p=

=1-0.1=0.9. Let’s substitute:

{

L —0.4 <0.01 |~ 20| 0.01 190 _|_ 2d(0.33)=2-0.1293 = 0.2586.
n 0.1-0.9

m
—=P
n

Then 261)(5 /LJ:O.% or | ¢ /LJ=O.95/2 or CD{g /Lj:
Pq Pq Pg

28

b) According to the condition P

< 8] =0.95. Let's find ¢.




=0.475 (appendix B) or (D(g /Lj = CI)(1.96) or & /L =1.96.
P

q Pq
Let’'s substitute: £ =1.96 % =1.96, /% =0.0588 ~ 0.06.

UL ng=0.9 and &=0.02. Let's
n

< gj =09= 2(13[5 /l] Thus ¢ /L =1.65.
Pg Pq

2
" _1650rn=t0 0109 so0 613

0.1-0.9 0.02°

Thus, it is necessary to take 613 students.
Recommended bibliography: [5; 6; 7; 10; 12].

c) According to the condition P(

find n. Then Pum— P
n

Let’s substitute:

0.02

Theme 28. Discrete random variables, their distribution laws
and numerical characteristics

28.1. A definition of random variables and their classification

A variable is called random, if it can receive real values with definite
probabilities as a result of experiment.

In general, random variables can be discrete or continuous.

The random variable X is called discrete, if such non-negative func-

__n
tion exists P(X =x;)=p;, i=Ln, > p; =1, which determines the corre-
i=1

spondence between the value X; of the variable X and the probability p;,
that X receives this value.

A random variable is denoted by X, Y, Z and so on and its possible
values are denoted by X;, Y;j, z; For example, if X is a random variable,

then its values are X, X,,...,X, (these values form a complete group of

n
events, therefore Y p; =1).
i=1
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Discrete random variables X and Y are called independent random
variables, if the events X =X; and Y =y, are independent for arbitrary i
and |.

28.2. The distribution law of a discrete random variable

The distribution law (row) of a discrete random variable is called a set
of all its possible values and probabilities which these values possess. It’s of-
ten written in the form of a table

Xi X1 X2 "' Xn

Pi Py P2 Pn

Example 28.1. Two balls are drawn in succession without replacement
from an urn containing 4 red balls and 3 black balls. The possible outcomes

and the values x; of the random variable X, where X is the number of red
balls, are:

Sample space X

RR 2

RB 1

BR 1

BB 0
Let's find the probability of each value x;: P(X =0)=P(BB)= % :
P(X :1):P(RB+BR)=§+§:;, P(xzz):P(RR):%

Let’s write the distribution law of this discrete random variable:

Pi

~N| =
~N |~
| N
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Distribution law (row) can be graphically plotted (fig. 5.1). Values of a
variable X; are marked on X -axis, the corresponding probabilities p; are
marked on Y -axis. The obtained points are connected with the help of seg-

ments. It results in a distribution polygon.
Example 28.2. Distribution law of a discrete random variable X

X -2 2 6 10 14
Pi 0.05 0.16 0.35 0.31 0.13

is given. Draw a distribution polygon.
Solution. Let’s plot the distribution polygon for the given distribution law
(fig. 28.2).

p p

— Tttt X t t t t t t t —» X
0 Xp X X Xn1 Xy -2 20 2 4 6 8 10 12 14

Fig. 28.1. A distribution polygon Fig. 28.2. The distribution polygon
28.3. The numerical characteristics of distribution

The mathematical expectation of a discrete random variable X is
called a sum of products of possible values X;, which a variable X is taken,

and their corresponding probabilities p;.
n
M(X) =2.% - Pi =Xy Py +Xg - P2+t Xy - Py (28.1)
i=1

For existence of the expectation (28.1), it is necessary that the corre-
sponding series converge absolutely.
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The expectation is the main characteristic defining the "position" of
a random, i.e. the number near which its possible values are concentrated.

General properties of a mathematical expectation:

1. M(cX)=c-M(X), ceR;

2. M(X+Y)=M(X)+M(Y), where X, Y are the discrete random
variables;

3. M(X-Y)=M(X)-M(Y) for independent random variables X
and Y.

4. M(aX)=aM(X) for any real «.

5. M(aX + Y )=aM(X)+ AM(Y) for any real o and f3.

6. M(X -Y)=M(X)-M(Y).

7. M(aX — Y )=aM(X)— AM(Y) for any real & and f3.

The variance of a random variable X is called a mathematical expec-

tation of deviation square of a random variable from its mathematical expec-
tation, i.e.:

n

DOX) =M|(X ~MOOR|= S -MOOR b (282

i=1

or variance of a random variable X equals a mathematical expectation of its
square minus a square of its mathematical expectation, i.e.:

D(X)=M(X?)-[M(X)F, (28.3)
where M (X 2) = Zn:xiz - P; - (28.4)
i=1

Properties of a variance:
1. D(C)=0 for any real C.

2. The variance is nonnegative: D(X)>0.

3. D(aX+,B):a2 -D(X) for any real  and f3.

4. D(aX )= a’- D(X ) for any real «.

5. D(X+Y)=D(X)+D(Y) for independent random variables X

and Y.
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6. D(X -Y)=D(X)+D(Y).

7. D(X-Y)=D(X)-D(Y)+D(X)-M2(Y)+D(Y)-M?(X).
Root-mean-square deviation (or standard deviation) of a random
variable X is the square root of its variance, i.e.:

&(X) = /D(X). (28.5)

A mode of a discrete random variable M is a value preceded and fol-
lowed by values associated with probabilities smaller P(M,,).

A median of a discrete random variable M, is the "middle" value. It is
the value of X for which P(X SX) is greater than or equal to 0.5 and
P(X > x) is greater than or equal to 0.5.

The expectation M ((X - a)k) is called the k-th moment of a discrete

random variable X about a. The moments about zero are usually referred to
simply as the moments of a random variable and sometimes they are called
initial moments. The k -th moment satisfies the relation:

Nk
Vk=2% - B
i=1

If a=M(X) then k -th moment of the random variable X about a is
called the k -th central moment. It satisfies the relation:

Example 28.3. Distribution law of a discrete random variable X :

X -2 2 6 10 14
P 0.05 0.16 0.35 0.31 0.13

is given. Find numerical characteristics of a discrete random variable X .
Solution. A. Let’s calculate M (X) by the formula (28.1):
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5

M(X) =2 Xj-Pj =X - Pp+Xp Py +Xg-P3+Xq-Pyg+Xg-Pg =
i1

=—-2-0.05+2-0.16+6-0.35+10-0.31+14-0.13=

=-0.1+0.32+2.1+3.1+1.82=7.24.

B. Let's calculate D(X) by the formulas (28.2) and (28.3), using (28.4):

1) D(X) = i(xi ~M(X)Y - p; =(-2-7.24)*-0.05+(2—7.24)*-0.16 +
i=1

+(6—7.24)*-0.35+(10—7.24)* -0.31+ (14— 7.24)* -0.13=17.5024;

2 2 2 2 2
2) M(X%) =X pr+X" Py+Xg - Pa+Xs° - Pg+Xs - P =
=(-2)?-0.05+22.0.16 + 62 -0.3+10% - 0.31++142 -0.13=69.92,

D(X) =69.92—7.24% =17.5024.

C. Let’s calculate o(X) by the formula (28.5):

o(X)=+/D(X) =+/17.5024 = 4.1836.
28.4. The distribution function

The probability of the fact that a random variable X receives a value
less than X, is called a distribution function of a random variable X and is

marked as F(X):
F(x)=P(X <x).

General properties of the cumulative distribution function:
1. F(x) is a bounded function, i.e. 0 < F(x)<1.

2. F(X) is a non-decreasing function for X € (— oo,oo), l.e.if Xo > Xq,
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then F(X,)>F(x)).
3. XlinjooF(x): F(—0)=0.

4. lim F(x)=F(+ow)=1.

X—>+00

5. F(x) is left continuous; i.e.

im  F(x)=F(x).

X—=>Xp -0

6. The probability that a random variable X lies in the interval (%, X, ) is
equal to the increment of its cumulative distribution function on this interval, i.e.

P(x < X <Xy)=F(X,)—F(x).

Example 28.4. Find the distribution function of the random variable X,
which is defined by the distribution law:

X; 1 2 3 4
pi | 0.7 | 0.21 | 0.063 | 0.027

Find the probability that the random variable X possesses a value less than
1 and more than 4.

Solution. A random variable X doesn’t possess the values less than 1,
thus for X <1 events X < X are impossible and F(x)=0.

If 1<x<2, then F(x)=0.7, because X can possess only the value
X =1 with the probability p=0.7.

If 2<x<3, then F(x)=0.7+0.21=0.91, because X can possess
only the values X =1or X =2 with the probability p=0.7 and p=0.21 (ad-
dition theorem for independent events).

If 3<x<4, then F(x)=0.7+0.21+0.063=0.973, because X can
possess only the values X=1, x=2 or X =3 with the probability p=0.7,
p=0.21 and p =0.063 (addition theorem for independent events).

If Xx>4, then F(X):l, because the event X <4 is reliable and its
probability equals 1.

The required integral function is defined by the formula:
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(0, if x<1
0.7, if 1<x<?2
F(x)=40.91, if 2<x<3.
0.973,if 3<x<4
1 if x>4

A graph of integral function will be of the form:

1‘4‘F(X)

081
063
041

02!
X

o0 1 2 3 4 &
Fig. 28.3. The graph of integral function

Let’s find the probability that a random variable X possesses a value
less than 1 and more than 4, i.e. P(1< X <4):

P(l< X <4)=F(4)-F(1)=0.973-0=0.973.

28.5. Numerical characteristics of an arithmetic average, a totality
of random variables. Properties of numerical characteristics

Let X1, X5,..., X, and M(X;), M(X5),..., M(X,) be random vari-
ables and their mathematical expectations, respectively.
X1+ Xo+..+ X,
n

Let X be a random variable which equals X =

(it
is the arithmetic average).
According to properties of a mathematical expectation we obtain:

)= M(X;)+M(X5)+...+ M(X,)

M (X
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I.e. the mathematical expectation of the arithmetic average of n random
variables equals the arithmetic average of their mathematical expectations.

Let D(X;), D(X5),..., D(X,,) be variances of these random variables
and max(D(X;), D(X,),..., D(X,))=D.

According to the conditon D(X;)<D, D(X,)<D, ..., D(X,)<D
we obtain:

D(X;)+ D(X5)+...+ D(X,) _n-D_D

n2 nZ n

D(X)=

I.e. the variance of the arithmetic average of n random variables whose vari-
ances are bounded is n times less than the maximum of variances.

If random variables Xi, X,,..., X,, are identical distributed, i.e.
M(X;)=M(X,)=...=M(X,)=a, D(X;)=D(X,)=...=D(X,)=D,
then:

n-a n-D D
M(X)=—=a, M(X)=—+=—,
()=-"Fa M=t

I.e. the mathematical expectation of n identical distributed random variables
equals their common mathematical expectation and the variance is n times
less than the common variance.

Hence we have:

(o
o(X)=—F,
Jn
I.e. the root-mean-square deviation of the arithmetic average of n identical
_y : o
distributed random variables equals T where (o =+/D).
n

28.6. Basic laws of discrete random distributions
and their characteristics

28.6.1. Binomial distribution law. A random variable X has the bi-
nomial distribution with parameters (n, p) (fig. 28.5) if

P,(x=k)=CKp*q" ™, k=0.1,...,n, (28.6)
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where 0< p<1, q=1-p, n>1.
The numerical characteristics are given by the formulas:

M(X)=np, (28.7)
D(X) =npq, (28.8)
o(X)=+/npq. (28.9)

Binomial distribution law of a discrete random variable is often written in
the form of a table:

X 0 1 n—-1 n
o qn C% nq n-1 Cr?_l pn—1q pn

The binomial distribution is a model of random experiments consisting
of n independent identical Bernoulli trials.

Example 28.5. The probability of passing an exam excellently for each
of three students equals 0.4. Make up a distribution law of a number of excel-
lent marks which are got by the students at the exam. Find a mathematical
expectation, a variance and a root-mean square deviation of a discrete ran-
dom variable.

Solution. Let a discrete random variable X be a number of students
with the mark "5" (a 5-point system). It has such possible values:

X1 =0 (no student passed the exam with the mark "5");
X, =1 (one student passed the exam with the mark "5");
X3 = 2 (two students passed the exam with the mark "5");

X4 =3 (three students passed the exam with the mark "5").

Students passing an exam with the mark "5" are independent events.
The probabilities of passing an exam of each student are equal, then we use
Bernoulli’s formula (28.6). According to the condition we have: n=3,
p=04,9=1-p=0.6.

Let’s find:

x, =0, R(0)=C9p°q> % =1-1.q° =0.6° =0.216;

X, =1, By(1)=C3p'q®>*=3-p-q* =3-0.4-0.6° = 0.432;
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X3 =2, P3(2)=C%p®q>%=3-p?-q=3-0.4°-0.6=0.288;

x, =3, B(3)=C3p°g® > =1.p>-q° =1-0.4.1=0.064.

The distribution law of the discrete random variable X is defined by
the table:

X 0 1 2 3
Pj 0.216 0.432 0.288 0.064

According to the formulas (28.7) — (28.9) for numerical characteristics
we obtain:

M(X)=np=3-0.4=1.2; D(X)=npq=3-0.4-0.6=0.72;
o(X)=./hnpq=+0.72 ~0.85.

28.6.2. Geometric distribution law. A random variable X has a geo-
metric distribution with parameters p (fig. 28.6) if:

P,(x=k)=pg¥, k=0,1,2,...

where 0< p<1,g=1-p,n=>1
The numerical characteristics can be calculated by the formulas:

1- 1- |

P p P P P
o - og
0.2+ 0.4
0.1+ H H 0.2-
I | . [ e
070 1 2 3 4 5 or o 1 2 2 4 5 6k

Fig. 28.5. Binomial distribution law Fig. 28.6. Geometric distribution
for p=0.55, n=6 law for p=0.55, n=6
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The geometric distribution describes a random variable X equal to
the number of failures before the first success in a sequence of Bernoulli tri-
als with probability p of success in each trial.

28.6.3. Hypergeometric distribution law. A random variable X has
the hypergeometric distribution with parameters (N, P, n) (fig. 28.7) if:

Ck Cn—k
P(x=Kk)=—"L"MN0_y-01,..,n,
Cx
where 0< p<1,g=1-p,0<n<N, N>0.
CK, CR K
If n<< N (in practice, n<0,IN), then: P ™ zCrif pkqn_k,

N
I.e., the hypergeometric distribution tends to the binomial distribution.
The numerical characteristics are given by the formulas:

N —n N —n
M (X)=np, D(X) = N1 Pa; o(X)= L "Pa-

A typical scheme in which the hypergeometric distribution arises is as
follows: n elements are randomly drawn without replacement from a popula-
tion of N elements containing exactly Np elements of type | and Nq ele-
ments of type Il. The number of elements of type | in the sample is described
by the hypergeometric distribution.

28.6.4. Poisson distribution law. A random variable X has the Pois-
son distribution with parameters A (/1 > O) (fig. 28.8) if:

kK,—4
P.(x=k)= A EI , k=0,12,..., (28.10)

where A =np, k!=1-2-...-Kk.
Poisson distribution law with parameter A of a discrete random variable
is often written in the form of a table:

Xi 0 1 2 n
A2e e
Pi e Qo4
2! n!
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Poisson distribution can be obtained as a limit of a binomial distribution
if n goes to o (N—>o) and p goes to 0 (p—>0) (in this case
g=1-p—1).

PA

P‘\ 03
0.41 0.2}
o il N |

o | | | I | | | |
010 1 2 3 4% 00 1 2 3 4 5 6k
Fig. 28.7. Hypergeometric Fig. 28.8. Poisson distribution

distribution law law for A =2

for p=0.5, N=10, n=4

The numerical characteristics can be calculated by the formulas:
M(X)=np=2A21, (28.11)
D(X)=npq~ 4, (28.12)

o(X)=+/npq =+/1. (28.13)

The Poisson distribution is the limit distribution for many discrete distri-
butions such as the hypergeometric distribution, the binomial distribution, dis-
tributions arising in problems of arrangement of particles in cells, etc. The
Poisson distribution is an acceptable model for describing the random num-
ber of occurrences of certain events on a given time interval in a given do-
main in space.

Example 28.6. The probability of finding a mistake on a book page is
equal to 0.004. 500 pages are checked. Make up a distribution law of a num-
ber of finding a mistake on a book page. Find a mathematical expectation, a
variance and a root-mean square deviation of a discrete random variable.

Solution. Let X be a number of finding a mistake on a book page, then
the possible values of X are 0, 1, 2, 3, ..., 500. Here p=0.004,n =500,

then 4 =500-0.004=2. Let's make up the distribution law of X according
to Poisson formula (28.10):
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0 52 1 -2

P500(X - O) - 2 € ~ 013534, P500(X :1) = 2 € ~ 027067 ,
2 42 3 -2

Py (x=2)=2 2? ~0.27067, Po(x=3)= 28" ~ 018045,
4 -2 5 -2

P500 (X — 4) - 2 4? ~ 009022 y PSOO(X - 5) = 2 € ~ 003609 ,
6 L2 7 -2

Psgo (X =6)= : 6? ~0.01203, Pioo(x=7)= LI 0.00344,
8 a2 9 -2

Poo(x=8)= 25" ~0.00086, Po(x=9)= 28" ~0.00019,
H10 o2

Psoo (X = 10) = ~ 0.00004 and so on.

At k >11 we have that Pyyy(x>11)~0.

500

Let's calculate the total sum of probabilities: >  p; =0.99999 ~1.
=1

Let's find the numerical characteristics by the formulas (28.11) —
(28.13):

M(X)=1=2; DX)=A=2; o(X)=+/1=+2~0.41421.

So, the distribution law has the form:

X: 0 1 2 3 4 5
p; |0.13534 | 0.27067 | 0.27067 | 0.18045 | 0.09022 | 0.03609
X: 6 7 8 9 10

p; | 0.01203 | 0.00344 | 0.00086 | 0.00019 | 0.00004

28.6.5. Negative binomial distribution law. A random variable X has
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the negative binomial distribution (r, p) (fig. 28.9) if:
- k
Pr(x=k)=Cfiia P'@-p) . k=0,1.., r,
where 0< p<1, r>0.

I
0.3

0 U i " 0

0o 1 2 3 4 5 6k

Fig. 28.9. Negative binomial distribution law for p=0.8, Nn=6

The numerical characteristics can be calculated by the formulas:

rll— rll— ril—
M) ="E=R). iy = zp); o(x) =Y ==P)
p P P
The negative binomial distribution describes the number X of failures

before the r-th success in a Bernoulli with probability p of success on each

trail.

For r =1, the negative binomial distribution coincides with the geomet-
ric distribution.

Recommended bibliography: [2; 6; 8; 11].

Theme 29. Continuous and absolutely continuous random
variables. Function and density of distribution
of probabilities. Numerical characteristics

29.1. A definition of continuous random variables. A distribution
function of probabilities of random variables and its properties

A continuous random variable is a random variable where the data
can take infinitely many values on some numerical interval or a random vari-
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able which takes an infinite number of possible values. Continuous random
variables are usually measurements.

Examples include height, weight, the amount of sugar in an orange, the
time required to run a mile.

A continuous random variable is characterized by two functions:

1) a distribution function (the integral distribution function) F(x);

2) a density function (the differential distribution function) f (X)

The probability of the fact that a random variable X receives a value
less than X, is called a cumulative distribution function of a random varia-

ble X and is marked as F(X):
F(x)=P(X <x).

General properties of the integral distribution function:

1. F(x) is a bounded function, i.e. 0 < F(x)<1.

2. F(X) is a non-decreasing function for Xe(—oo,oo), e, if Xo>X,
then F(X,)>F(x)).

3. lim F(x)=F(-o)=0.

X—>—00
4. lim F(x)=F(+ow)=1.

X—>+00
5. The probability that a random variable X lies in the interval (Xl, X2)

is equal to the increment of its cumulative distribution function on this interval,
ie. P(x; < X <Xy)=F(x,)-F(x).
6. For continuous random variables:

P(x <X <X))=P(x <X <X3)=P(x < X <%,)=P(x, < X <x5).

29.2. Absolutely continuous random variables. A distribution density
of function of absolutely continuous random variables

The random variable X is called a continuous random variable, if for
any numbers a < b such non-negative function f(X) exists, that:

P(a< X <b) jf(x
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The random variable X is called an absolutely continuous random
variable, if there is a non-negative function f(x) on R that:

X
P(X <x)= [ f(t)dt, for every x &(—o0,).

—0o0

The term a continuous random variable is a synonym of an absolutely
continuous random variable.

An absolutely continuous random variable is a random variable whose
cumulative distribution function is a continuous function.

The function f(x) is called a density function of a continuous random

variable.
General properties of the density function:

1. f(x) is a non-negative function, i.e. f(x)>0 for all x.

2. f (x) is a non-decreasing function for X € (— 00, oo), then:
[ f(x)dx=1

(the condition of normalization of the function f(x)).

3. The relationship between the functions f(x) and F(x):
X
F(x)= [f(x)dx  and f(x)=F'(x).

4. The probability that a random variable X lies in the interval (xl, X2)
is equal to the increment of its density distribution function on this inter-

Xg
val;i.e.: P(x < X <X,)= jf(x)dx.
X

Example 29.1. The density function of a continuous variable X is giv-

0, x<0
en by f(x)= c(4X—2X2), 0<x<2. A What is the value of c?
0, X>2

B. Find P(X >1).
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Solution. Since f(x) is a probability density function, we must have the

condition of normalization of this function that J f (x)dx =1, implying that:

—00

00 0 2 +00
[ f(x)dx = dex+jc(4x—2x2)dx+ [Oodx =1
—o0 —o0 0 2

or

2 3
clax—2x2jix =1 or {4%—2%}

O =N

or
C(S—E—Oj:cé:l or c:g.
3 3 8

So, the probability density function is:
0, X<0

f(x):4§(4x—2x2), 0<x<2.

\O, X>2

Let's find P(X >1):

+00 23 +00
P(X >1)=P(l< X <+0)= | f(x)dx:j§(4x—2x2)dx+ [ 0dx =
1 2

1
3
:§ 2X2_2i
8 3

’ 3 2.23 2.13 3(8 4) 1
=2 2.22_2°%2 |_|2.12_5— :-(———j:—.
. 8 3 3 gl3 3) 2

Example 29.2. The differential distribution function of a continuous
0, x<1

1
variable X is given by f(x)=1X —5 1< x < 2. Find the integral distribu-

\O, X> 2
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tion function F(x). Plot the graphs of the functions f(x) and F(x).

Solution. The integral distribution function F(x) according to the formu-

lais F(x jf(x)dx

If x<1, then f(x)=0 and F(x J'f(x)dx— IOdX 0.

If 1< Xx<2, then F

If x>2,then F(x)=

1

1 X 2
= dex+j(x—1jdx :[X———
o 1 2 2

2

—0o0 —0o0

j f (x)dx = j f (x)dx +j f (x)dx =

1 2 1 X
= dex+j(x——)dx+dex :£
—0 1 2 2

~=2-1-0=1.

—00

X
x2 1 1 1 x2 X
X[ =—=——X—-| === |=— ——.
. 2 2 2 2 2 2

jf(x)dx_ jf(x)dx +jf(x)dx+jf(x)dx_

—Qo0

2
2 2 2
LS I PN L e
2 2] 2 27 (2 2

Let's write the formula for the integral distribution function F(x):

F(X) =+

0, Xx<1

2
X——f, 1<x<2.
2 2

1 X> 2

Example 29.3. The integral distribution function of a continuous varia-

ble X is given by F(X) =+

0

f(x).

\1’

Xx<0,5

2x -1

2

, 0,5<x<15. Find the density function

X>15
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Solution. It is known that f(x) = F'(x). Thus:

(0), x<0,5 o
f(x)= F'(X) = (Zx_lj, 05<x<15 =220
2 2
@, x>15 0,
0, x<05
~J]1, 05<x<15.
0, x>15

Xx<0,5
05<x<15
Xx>15

29.3. Numerical characteristics of absolutely continuous random

variables and their properties

Let’s consider basic numerical characteristics of an absolutely continu-

ous random variable.

The mathematical expectation M(X) of an absolutely continuous

random variable is calculated by the formula:

M(X) = ojox- f (x)dx.

For existence of the expectation (29.1), it is necessary that the corre-

sponding integral converge absolutely.
General properties of a mathematical expectation:

M(C)=C foranyreal C.

N o g bk~ w0 N

Y)=M(X)-M(Y)

Here X,Y are mutually independent random variables.
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The variance D(X) of an absolutely continuous random variable is
defined by the formula:

D(X) = TxZ - ()dx = [M (X)[

or

D(X) = T(X—M(X))Z- f (x)dx.

—00

General properties of a variance:
1. D(C)=0 for any real C.

2. The variance is nonnegative: D(X)>0.

3. D(aX+,B)=a2 -D(X) for any real  and f3.

4. D(aX )= a’- D(X ) for any real c.

5. D(X+Y)=D(X)+D(Y) and D(X —Y)=D(X)+D(Y).

6. D(X-Y)=D(X)-D(Y)+D(X)-M2(Y)+D(Y)-M?(X).

The root-mean-square deviation (or standard deviation) o(X) of
an absolutely continuous random variable is the square root of its variance:

o(X) =/D(X).

A root-mean-square deviation has the same dimension as the random
variable itself.

A mode of an absolutely continuous random variable M is a point of
maximum of the probability density function f(X).

The expectation M ((X —a)k) is called the k-th moment of an abso-

lutely continuous random variable X about a. The moments about zero are
usually referred to simply as the moments of a random variable and some-
times they are called initial moments. The k -th moment satisfies the relation:

+0
vie = [XS-f(x)x.

—0o0
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If a=M(X) then k-th moment of the random variable X about a is

called the k -th central moment. The K -th central moment satisfies the rela-
tion:

+00

= JO=M X)) F (.

—Q0

Example 29.4. The density function of a continuous variable X is giv-

0, x<05
en by f(x): 1, 05<x<15. Calculate: a) the mathematical expec-tation
0, x>15

M (X) and the variance D(X); b) the probability that a random variable X
lies in the interval (1.0, 2.3); c) plot graphs of the functions F(X) and f(X).

Solution. A. Let’s find the mathematical expectation:
oo 0.5 15 0
M(X)= [x- f(x)dx= [x-0dx+ [ x-1dx+ [x-Odx =
—0 —0 05 15

o 1.5

15 .
=0+ jxdx+0:—

0.5

=5-[1.52 —0.52]:1-[2.25—0.25]=1-2:1.
0.5 2 2 2

Let’s calculate the variance: D(X) = sz - f(x)dx —[M (X)]2

—00

0.5 1.5 0 1.5

= [x?-0dx+ [ x*-1dx+ [x*-0dx—1° =0+ [x°dx+0-1=
—00 0.5 1.5 0.5
3 15 1 1

== —1:5-[1.53—0.53]—1=5[3.375—0.125]—1:

3 0.5

= % -3.25—-1~0.0833.
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B. Let’s find the probability that a random variable X lies in the interval
(1.0, 2.3) by the formula P(x; < X < X,)=F(X,)—F(x).

Thus, P(L< X <2.3) = F(2.3) - F (1) =1_2'17‘1:1_%

C. Let’s plot graphs of the functions F(X) and f(X) (fig. 29.1, 29.2).

=0.5.

1.2 4

12, 1 ——
0,8 4 : :
0,6
0,4 4

0,2

fr=)

1 05 0 05 1 15 2 25 3 1 05 0 05 1 15 2 25 3

Fig. 29.1. The graph of F(X) Fig. 29.2. The graph of f(X)

Recommended bibliography: [5; 6; 8; 10; 11].

Theme 30. Uniform, exponential and normal laws
of probabilities distribution. Transformation of sequences
of normal distributed random variable

30.1. A uniform law of probabilities distribution
and its numerical characteristics

The uniform law of distribution is characterized by a probability density
function f(X) (the differential distribution function) (fig. 30.1) and a cumula-

tive distribution function F(x) (the integral distribution function) (fig. 30.2).

0, Xx<a 0, Xx<a
F()=1—1 . a<x<b, F()=12"2 a<x<b.

b-a b-a

0, X>b 1, X>b

The probability that a random variable X lies in the interval (a, ) is
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equal to the increment of its integral distribution function on this interval; i.e.:

Pl <X < f)=F(p)-Fla)=L=2

~b-a’
) Fiok
1
ba | I! | B
| | |
| [ l
L
0| a b ey 0l o L >
Fig. 30.1. The graph of f(X) Fig. 30.2. The graph of F(X)
Numerical characteristics of uniform random variables are
+
1) mathematical expectation: M (X) = a_b;
b—a)’
2) variance: D(X) = ( ) ;
12
- . b-a
3) root-mean-square deviation (or standard deviation): o(X) = 2—\@

Example 30.1. The parameters a,b of the uniform law of distribution
are given: a=2 and b =6. Find: a) functions f(x) and F(x); b) the mathe-
matical expectation M (X), the variance D(X) and the root-mean-square
deviation o(X);c) P(0< X <3).

Solution. Let's find functions f(x) and F(x) substituting a=2 and
b =6 into formulas for functions:

0, X<2 (0, x<2
f(x)=<i, 2<X<6 :<£, 2<X<6
6-—2 4
\O, X>6 \O, X>6




0, X<2 0, X<2
F) =222 2cx<6 =X22  2ox<s.
6-2 4
\1, X>6 \1, X>6
Let’s calculate the numerical characteristics:
2 2
M(X)=a+b=2+6:4, D()():(6 2) :4_:f,
2 2 12 12 3
G(X):b—a 6—2 4 2

23 203 243 3

Let’s calculate the probability that the uniform random variable X lies
in the interval (0, 3):

Par< X < B)=P(0< X <3)= F(3)—F(O)=—=§=O.75.
30.2. An exponential law of distribution

The exponential distribution law is characterized by a probability density
function f(Xx) (the differential distribution function) (fig. 30.3) and a cumula-

tive distribution function F(x) (the integral distribution function) (fig. 30.4).

{O, X<0 {O, X <0
f(x)= F(x) =

Ae ™ x>0 1-e™™ x>0

The probability that a random variable X lies in the interval (a, B) is
equal to the increment of its integral distribution function on this interval; i.e.

Pla< X <B)=F(B)-F(a)=e** —e¥#,

Numerical characteristics of exponential random variables are

1
1) mathematical expectation: M (X) = E;
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2) variance: D(X) = iz;

A

1
3) root-mean-square deviation (or standard deviation): o (X) = z

A Foh
A
1 wwwwwww
G 2 G >
Fig. 30.3. The graph of f(X) Fig. 30.4. The graph of F(X)

Example 30.2. The probability density function of the exponential law
0, x<0
0.05-e7 %% x>0
F(x); b) the mathematical expectation M (X), the variance D(X) and the
root-mean-square deviation o(X); c) P(2 < X <10).

Solution. We have that 4 =0.05 from the formula of f(X). Let’s sub-
stitute this parameter into the formula for F(X) and find the numerical char-

of distribution f (x) :{ is given. Find: a) the function

acteristics:
() 0, Xx<0 0, Xx<0
X = = y
1—e™™ x>0 [1-e709X x>0
M(X)=1=i=20,D(X)=i= 1 =400,0(X):£=i:20.
A 0.05 22 0.052 A 0.05

Let’s calculate the probability P(2 < X <10) that a random variable X
lies in the interval (2,10):
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Pla<X <f)=P(2<X <10)=e ™ —e# =g 0052 _¢700510 _

=0.90484 —0.60653 = 0.29831.

30.3. A normal law of probabilities distribution
and its standard representation

A random variable X has the normal distribution with parameters

(a, 0'2) if its probability density function f (x) and the cumulative distribution
function F(X) have the forms:

_(x-ay (x-a)?
1 20° 1 e 20° dx,

o 27r.e ’ )= ‘[ o~2rx

—00

f(X) =

The normal distribution law is characterized by two functions:
the probability density function f(X) (the differential distribution function) and

the cumulative distribution function F(X) (the integral distribution function).
Let’'s check whether that satisfies the normalization property of the dif-
ferential distribution function. Indeed, f(x)> 0.
Let’s calculate:

(x-a)? X—a
+00 +00 - t:—,X:O't+a,
[ f(x)x= | jz_.e 20? gx=|' o -
oo 0 ONER dx = odt, t; = —oo, ty = +o0
t2 t2
TL 2 o T T2dt=— 2 -1
— - .P . = e = T =1,
_'[06\/27Z' N2m N2
where
o
[e 2dt=+v2r (30.1)

is called Poisson’s integral.

55



Let’s define the integral distribution function F(x) for the normal distri-

bution law:
X X 1 _(x—a2)2

F(x)= | f(x)Jdx= e 207 (x.

(X) {O (xH L ~ox

Let’s calculate the obtained integral:

2
X—a
1 2 2 t=2"2 y_ot+a
F(X):J \/Z—'e 20 dX: O —
—0 TN dx = otlt, t) =—oo, t, =+o0
x-a 2 x-a 2
[ L ez.ot=2 [e zat
= .e . -
_‘L o~ 2rx N2m
Let’s use the property of additivity of an integral, i.e.
0o _t* - _L
= [e 2dt+— j 2
0 &
Let’'s apply Poisson’s integral je 2dt = E\/ 27t and transform this in-
x-a 2 2
L [ e 2at | | f O(x) = — T 2t
tegral — | € using Laplace integral function ®(X)=—|¢ :
N27 N2,
x-a 2
X—a 1 7 -
i.e. d = e 2dt, and obtain:
( o ) N 27 g
1 1 x—a) 1 X—a
FIX)=—— =27+ D] —— |==—+ D] —— |.
()\/272'2 (0)2 (O‘j
Thus, the linear transformation t == reduces the normal distribu-
o
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tion with parameters (a, 02) to the standard normal distribution with parame-

ters (O, 1) and the cumulative distribution function

fo =) F() = S+ (t),
o 2
. 7 L 0
where (o(t):F-e 2 and (I)(t):FJ'-e 2 dt are Laplace differential
T Ty

and integral functions.

The values of the probability density function f (x) and the cumulative
distribution function F(X) are computed by (see appendix A and appen-
dix B).

Graphs of the differential function f(X) and the integral function F(X)

are shown in fig. 30.5 and fig. 30.6. For the normal distribution the curve of
f (X) reaches the maximum at X =a and it is symmetric relative to

the line x=a.

Ttk Feg)
| - ==
|
L

| 3
| |

el ! - = |

0 x=a X 0 a ’r»

Fig. 30.5. A density curve f(X) graph Fig. 30.6. The graph of F(x)

Numerical characteristics of normal distribution law are:

1) mathematical expectation: M (X)=a (M(t) =0),

2) variance: D(X)= o (D(t) =1),

3) root-mean-square deviation: o(X)=c (o(t) =1).

Let's check that M (X ) =a using the definition of the mathematical ex-
pectation of the absolutely continuous variable:
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X—a
(x—a)z t:T,X:Gt'Fa
+00 400 1 — >
M(X)= [ x- f(x)dx= [ x- e 20" dx=|dx=ot, =
(X) JOO (x) L o
tlz—oo,t2:+00
1 +0o0 _ﬁ o +00 _i a +00 —ﬁ
= ot+al 2odt=—~— |te 2dt+— | e 2dt.
oiag J \AraR Pty e e |

The first integral equals zero, because it is the integral of the odd func-
tion on the symmetric interval relative to the origin. The second one is the
Poisson’s integral (30.1).

Thus, M(X )= 2 .2z =a.

2z

Let's check that D(X) =o
the absolutely continuous variable:

2 using the definition of the variance of

(x-a)®
+00 +00 —
D(X)= [ (x=M(X))* - f(x)dx= [ (x—a)*- \/12—-e 20% dx =

S e o271
_t:E,X:Ot'Fa B (72 +002_t22 ~
- %) =T [te 2dt=
dX:O'dt, t]_:—OO,t2:+OO s
u=t, du=dt 2"
2
= _f _ﬁ 2 _ﬁ :—G—te_z +
dv=te 2dt, v=|e Zd(zj:_e 2| Nex
H;QDJ
=0
2 +oo t° 2
O Py (o)
2 (e 2dt=0+—— 27 =57
) * o Y=o
%/_/
=27
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Thus, D(X)=o".
Let’s find probability that a random variable X, distributed by the nor-

mal law with parameters (a, 0'2), lies in the interval (a,ﬁ):

Pla <X < B)=F(8)- F(a):%+®(ﬁ)—(%+q{a__anz

o)

A2 o)

Thus, the probability that a random variable X lies in the interval
(a,ﬁ) is equal to the increment of its integral distribution function on this in-
terval; i.e.

Pla< X < f8) = F(ﬁ)—F(a):CD(ﬂ_aj—CD(a—_aj.
O

(o}

Example 30.7. The probability density function of the normal law of
(x-3)°
L -e_Tis given. Find the integral function, calcu-
227 |
late the numerical characteristics and P(1< X < 7).
Solution. We have that a=3 and o =2 from the formula of f(X).

Let’'s substitute these parameters into the formula for F(x) and find the nu-
merical characteristics:

distribution f (x) =

) (x-af (x-3Y
F(x)= | 1 e 207 gy— | e 22 dx—
~.o2r c22n
X 1 _(X_3)2
= | e 8 dx,
22
M(X)=a=3, D(X)=0c?=2%=4, o(X)=0=2.

Let’s calculate the probability P(1 < X < 7) that a random variable X
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lies in the interval (1,7):

P(ar < X < )= P(L< X <7)=®(@j_q{“_—a):

= @(7—_3) — @(?) = ®(2)-0(-1)=

use appendix B
=||®(2)=0.4772 | =0.4772-0.3413=0.1359.
d(1)=0.3413

use the property
®(-x)=P(x)

H _0(2)+ 1) =

Let’s find probability that a module of the deviation of the normal dis-
tributed random variable from its mathematical expectation is less than any

nonnegative &, i.e. P(X —a <¢):

pr _a‘<g):P(—g<X —a<5)=P(a—g<X <g+a)=

Aol o of 2 o(2)

Thus,

P(X —d<s)= 2@(5). (30.2)
(o3

Three sigma rule. Let’s transform the formula (30.2). Let € =0 -1, then
P(X —a < ot)=2(t).

Ift=1,ie. £=0,then PQX —a< 0'): 2d(1)=0.6826. It means that
68 % of values of a random variable X is located on the interval (a+ o).

If t=2, i.e. ¢=20, then PQX —al< 26)= 2d(2)=0.9544. It means

that 95 % of values of a random variable X is located on the interval
(a+20).
If t=3, ie. £=30, then P(X —a|<30)=2d(3)=0.9973. Hence

three sigma rule means the normal distributed random variable X pos-
sesses all its values on the interval (a +3c) with the probability 100 %.
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30.4. Gamma-distribution

A random variable X that is gamma-distributed with shape k and
scale @ is denoted by T'(k, 8).

The probability density function and the cumulative distribution function
of the gamma distribution can be expressed in terms of the gamma function
parameterized in terms of a shape parameter kK and scale parameter § and
the lower incomplete gamma function, i.e.

1 k-1 -2 . X }/(k,xj
(=1 )" © 0 R -
0

0, Jif x<0

+00
where F(k): jtk_le_tdt is the gamma function, both k and @ are positive
0
values.
Numerical characteristics of gamma distribution law are

1) mathematical expectation: M (X) =k#&;
2) variance: D(X) = ko?;

3) root-mean-square deviation (or standard deviation): o(X) = ok .

30.5. Zz-distributions (chi-square) of Student and Fisher,
their relationship with a standard normal law

A random variable X = ;(Z(n) has the chi-square distribution with n

degrees of freedom if its probability density function and the cumulative dis-
tribution function have the forms:

n, X
X2 e 2,if x>0

f(x)=12 -r(“) , (30.3)

0, Jf x<0
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where F(%) Is the gamma function.

Numerical characteristics of gamma distribution law are:

1) mathematical expectation: M (X)=M (;(Z(n)): n;
2) variance: D(X)= D(Zz(n))= 2n;

3) root-mean-square deviation: o(X )= G(}(Z(n))z Jan.

Main property of chi-square distribution. For an arbitrary n the sum:
L2
X => Xk
k=1

of squares of independent random variables obeying the standard normal
distribution has the chi-square distribution with n degrees of freedom.

The values ;(z(n) are tabulated.

Relationship with other distributions:
1. For n=1, the formula (30.3) gives the probability density function of

the square X 2 of a random variable with the standard normal distribution.
2. For n=2, the formula (30.3) gives the exponential distribution with

parameter A = %

3. As n— o the random variable X =;(2(n) has an asymptotically
normal distribution with parameters (n, 2n).

A random variable X :t(n) has Student’s distribution (t-dis-

tribution) with n degrees of freedom (n > 0) if its probability density func-
tion and the cumulative distribution function have the forms (fig. 30.7, 30.8):
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. n+1 n+1
2 ( XZJ_Z
f(x)= 1+ , (30.4)
Jnz T 2) n
n+1 n+1
")) o ey
F(x)= [|1+=— dt,
ﬂ-r(gj—w "

n
where F(—j is the gamma function and X € (— 00, + 00).

Numerical characteristics of gamma distribution law are
1) mathematical expectation: M (X) =M (t(n))=0if n>1;

" frns2
2) variance: D(X) = D(t(n)): n-2" ;
0, for n<2

3) root-mean-square deviation: o(X) =./D(t(n)).

T F(x) )

0.41 1+——————=
0.2\ ’}/
+ f ).-.-\:

2 4 0 i 3 2 4 O i b3

‘- -

Fig. 30.7. Probability density
function of Student’s
t-distribution for n=3

.

Fig. 30.8. Cumulative distribution
function of Student’s
t -distribution for n=3

Main property of Student’s distribution. If n and Zz(n) are independent
random variables and 77 has the standard normal distribution, then the ran-

dom variable




has Student’s distribution with n degrees of freedom.

The values t(n) are tabulated.

Relationship with other distributions: as n — oo Student’s distribution is
an asymptotically normal distribution with parameters (O, 1).

Student’s distribution is used when testing the hypothesis about the
mean of a normally distributed population with an unknown variance.

A random variable X has F -distribution (or Fisher—Snedecor distribu-
tion) with parameters k; and K, if its probability density function has the
form:

ki ko

F(klzkzjklz KZ ko ky+ko
f(x)= )

F(kzljr(kzzj x2 (kx+k,) 2,

where I'(n) is the gamma function and X >0.

F -distribution (or Fisher—Snedecor distribution) is called the distri-

L ()

bution of a random variable X =F = ,where y%(ky) and z%(k,)

are random variables which have y?-distribution with k; and k, degrees of
freedom, respectively.
Main property of F -distribution. F -distribution (or Fisher—Snedecor
1 2
k*Z (kl)
distribution) is the distribution of a random variable X =F =—1

where Zz(kl) and ;(z(kz) are random variables which have y°-distribution

with k; and k, degrees of freedom, respectively.

The values F are tabulated.
Relationship with other distributions: as N — oo F -distribution is an as-
ymptotically normal distribution.
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Student’s distribution is used when testing the hypothesis about the
mean of a normally distributed population with an unknown variance.
Recommended bibliography: [2; 5; 7; 9; 11].

Theme 31. Random vectors and laws of their distributions:
joint (consistent, marginal and conditional. Systems
of independent random variables. Conditional and marginal
numerical characteristics

31.1. Random vectors and joint law of probabilities distribution,
its components

The concept of a random vector is a multidimensional generalization of
a random variable.

Let's suppose that random variables X, X,,..., X, are defined on a

sample space 2 or, in other words, each outcome of a random experiment
on a sample space (2 may need to be described by a set of n>1 random

variables X4, X,,..., X,. Then one says that an n-dimensional random
vector Y:(Xl, X,,..., X)) or a system of random variables is given.
The random variables X4, X,,..., X, can be viewed as the coordinates of

points in an N-dimensional space.
For multidimensional random variables we can use basic concepts of
one-dimensional random variables.

The distribution function I‘7(x1, x2,...,xn) of a random vector

X =(Xy, X5, ..., X,,) is defined by the formula:
Fo (X, Xo, ..oy X ) = Pl Xq(@) < xq, Xp(@) < Xy, ..., Xp(@)< X, }.

This distribution function I'7(X1, Xo,.ues Xn) IS nondecreasing one of its
arguments Xq, X, ..., X, and it defines a law of probabilities distribution of a
random vector X = (Xl, Xy, .0 Xp).

A random vector X =(X7, X5, ..., X,,) is called discrete if there ex-

ists a finite set or a infinite set of N-dimensional random vectors X;, Xo, ...,
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X, such that:

S P(X =x)=1.
i=1

A distribution law of a discrete random vector is defined completely by
definition of vectors X;, X,,... and their probabilites p; = P(Y = )‘(1),
p2 = P(Y: )_(2), ... such that pl + p2 +...=1.

A random vector X is called absolutely continuous (or, simply, con-
tinuous) if there exists nonnegative function fy (Xl, X9y .us Xn) such that for
any X=(%, X,,..., X,) a distribution function I‘7(x1, Xo, .oy X ) = I_7(X)

can be presented in a form of n-dimensional integral, i.e.:

X1 X2 Xn
Fe(x)= [dty [dty... [f(ty, to, ...t )dt, .

—Q0 —Q0 —00

This function fy(xl, Xo, ..o xn) is called a density of probabilities

distribution of a random vector X .
A density of distribution also determines distribution law of a random
vector as:

:8”I'7(x1, x2,...,xn).

fo (X0, Xp, 0 Xn) S 0%,... ox
... OX,

For independent random variables X;, X,,..., X;; a distribution

function |_7(X1,X2,...,Xn) of distribution n-dimensional random vector

X =(Xy, X,,..., Xp,) is equal to a product of distribution functions of ran-

dom variables X, X5, ..., X, i.e.

F (X1, Xp, .0 Xn ) = FX1(X1)' Fx, (). Fx, (Xn)-

This condition presents a base of a definition of random variables’ in-
dependence.

If X =(Xy, X5, ..., X,,) is an absolutely continuous random vector,
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then for independent random variables we have
fi O, Xo, 000 X ) = le(Xl)' fx, (x2):.s fx, (%n)-

If Y:(Xl,Xz, e Xn) is a discrete random vector, then for inde-

pendent random variables we have:
P(Xl - Xl’ X2 - X2, ceoy Xn - Xn)= P(Xl - Xl)' P(X2 - Xz)‘...‘ P(Xn = Xn).

Let’s consider the following properties of random vectors by the exam-
ple of systems of two-dimensional random variables.

31.2. A system of two-dimensional random variables. Probabilities
of a function of joint distribution, a component of two-dimensional
vector. Marginal functions of distribution of a component
of a random vector

Let's denote Z(X,Y) as a two-dimensional random vector and call
each random variable X and Y as a component.
The distribution function F(x,y)= Fxy (x,y) of a two-dimensional

discrete or absolutely continuous random vector Z(X,Y) or the joint distri-
bution function of the random variables X and Y is defined as the pro-
bability of the simultaneous occurrence (intersection) of the events (X < X)

and (Y < y), i.e. the probability that X possesses the value less than X at Y
less than y:

F(x,y)=Fyy(xy)=P(X <x,Y <y). (31.1)

Geometrically, F(X, y) can be interpreted as the probability that the
random point (X,Y) lies in the lower left infinite quadrant with vertex (x, y)
(fig. 31.1).

Given the joint distribution of random variables X and Y, one can find

the distributions of each of the random variable X and Y, known as
the marginal distributions:

Fy(x)=P(X <x)=P(X <X,Y <+0)=Fy y (X, +0),
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R (y)=P(Y <y)=P(X <+00,Y <y)=Fy y(+0,Y).

AY
(X y)

X<x Y<y

Fig. 31.1. Geometrical interpretation of the distribution function F(X, y)

The marginal distributions don’t completely characterize the two-
dimensional random variable (X,Y), i.e. the joint distribution of the random

variables X and Y can’t in general be reconstructed from the marginal dis-
tributions.

Let's enumerate properties of the distribution function F(X, y) (which
are similar to properties of one-dimensional random variable).

1. 0<F(x,y)<1, because 0<P(X <x,Y <y)<1.

2. F(x,y) is a nondecreasing function of each of the arguments X
and Y.

3. If one of the arguments of F(X, y) approaches + oo, then this func-

tion tends to the distribution function of another argument which doesn’t ap-
proach + o, i.e.:

Jiinoo F(x,y)=F(x,00)=F(x), (31.2)
lim F(x,y)=F(,y)=F(y). (31.3)

4. If both arguments of F(x, y) tend to +oo, then this function ap-

proaches 1, i.e.:
lim F(x,y)=F(c0,00)=P(x <00,y <o0)=1.

X—>0
Y—>00

5. If both or one of the arguments of F(X, y) tends to — o, then this
function approaches 0, i.e.:
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lim F(x,y)= lim F(x,y)= lim F(x,y)=0
X—>—00 X—>—00 y—>—00
y—>—©

6. If components X and Y are independent F(X,y)=F;(x)- F,(y).
7. The probability that the random vector (X,Y) lies into an arbitrarily

rectangle (a< X <b, c<Y <d) with sides parallel to the coordinate axes is
calculated by the following formula:

P(a<X <b,c<Y <d)=F(b,d)+F(a,c)-F(a,d)-F(b,c). (31.4)

8. The function F(X, y) is left continuous in each of the arguments.

A two-dimensional random vector is said to be discrete if each of
the random variables X and Y is discrete.

If the random variable X takes the values Xq, X,, ..., X, and the ran-
dom variable Y takes the values Yy, Yo, ..., ¥, then the random vector

(X,Y) can take only the pairs of values.
A distribution law of a discrete two-dimensional random vector is
called a set of possible values X =X, Y =y; (i =1,n; j=1m) and their

corresponding probabilities of joint occurrence pjj = P(X =X, Y = yj):

n m
= p(xi, yj) under condition ) >’ p(xi, yj)=1.
i=1j=1
It is convenient to describe the distribution of a two-dimensional dis-
crete random variable using the distribution law shown in table 31.1. Here

each cell (i, j) contains the probability p(xi, yj) of a distribution of events

(X =x,Y=y;)i=Ln;j=1m).

Since events (X =X;,Y = yj) (i =1n: J :1,_m) which mean that the
random variable X possesses the value X; and the random variable Y pos-
sesses the value y; are disjoint and only possible, i.e. form a complete

group of events, then a sum of their probabilities equals 1, i.e.

n m

2.2 hj =L

i=1 j=1
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Table 31.1
The distribution law of a discrete two-dimensional
random vector (X,Y)

Y n

X Y1 Yo Ym E‘lpxi
X Pir | Pr2 o Pim | Px
X2 Por | P22 | -+ | Pam | Px
Xn Pt | Pn2 Pom | Px,

m

szlpy,- Py | Py, | o | Py | 1

A balance column or raw of this table of distribution (X,Y) gives pro-
babilities respectively for distribution laws of one-dimensional components
(%, i) or (yj, pj)-

In order to find the probability that one-dimensional random variable
possesses a definite value using the table of distribution (see table 31.1) it is
necessary to summarize probabilities pj; of the corresponding raw (column)

for this value of the given table:

m —
Py = 2P, i=1n, (31.6)
j=1
or
n . —
pyj =) Pij » J=1m. (31.7)
i=1

If some numbers p;; are equal to zero then in this case an occurrence

of this random variable is impossible.

On the base of the distribution law of a random vector (X,Y)
(tabl. 31.1) we can define the distribution law of each one-dimensional ran-
dom variable X and Y. Since the event (X :Xi) is a sum of events
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(X=x,Y=y1), X=%,Y=Y,), ..., (X=%,Y =y,,), then its probability
is calculated by the formula (31.6).

The distribution law of one-dimensional random variable X at calculat-
ed values p,. can be given in a form of a table 31.2 and similarly to that a

distribution law of one-dimensional random variable Y is given in a form of a
table 31.3.

Table 31.2
A distribution law of one-dimensional random variable X
Values of X X | Xo | o | X
Probabilities Px | Pxy | - | Pxa
Table 31.3
A distribution law of one-dimensional random variable Y
Valuesof Y | Y1 | Y2 | --- | Ym
Probabilities | Py, | Py, | ... | Py,

31.3. Absolute continuous distributions. A density of joint distribution
and its properties. Marginal densities of distribution of components of a
random vector

In addition to a distribution function F(x, y) a characteristic of a system
of two absolutely continuous random variables is a density of a distribution of
probabilities (X, y).

A density of a distribution of probabilities f(x, y) for a system of
two absolutely continuous random variables (X ,Y) is the second mixed de-

rivative of its distribution function F(x, y):

8%F(x,
f(x, y)=%ayy). (31.8)

This function f(x, y) can exist under condition that F(x, y) is continu-
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ous relative to its arguments X and Yy and twice differentiable.

Geometrically the function f(x, y) in three-dimensional space can be

compared with a definite surface which is called a distribution surface of
probabilities of a system of two absolutely continuous random variables
(X,Y) (fig. 31.3).

1. The function f(X,y)> 0, because F(X, y) is nondecreasing relative
to arguments X and Y.

2. For this function f(X, y) the normalization condition is fulfilled, i.e.:

] £(x, y)dxdy=1, (31.9)
Q

where ) is a domain of a definition of an absolutely continuous random vari-
able; f(x, y)dxdy is the probability of a location of a system of two absolute-
ly continuous random variables (X,Y) in the rectangle with sides dx, dy
(see fig. 31.3).

+dy A(><,y+dy) (x+dx,y+dy)
y+dy
W
y 7
(x,y) (x+dx.y)
0] x X+dx >x

Fig. 31.3. A distribution surface of probabilities of a system of two
absolutely continuous random variables (X,Y)

A density of a distribution of probabilities has the following properties
f(x,y):

If Q={-00<Xx<+m,—0<Yy<+o}, then (31.9) has the following
form:

fo joof (x, y)dxdy=1. (31.10)

—00 —00
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3. The relationship between a distribution function of probabilities of
a system of two random variables and a density of probabilities is defined by:

F(x,y)= )j( }/f(x, y )dxdy.

4.1f Q={a<x<b,c<y<d}, then:

XY
F(x, y)=]] f(x y)dxdy. (31.11)

ac

5. The probability of a location of a system of two random variables
(X, y) into the domain D < €2 is calculated by the following formula:

P((x,y)e D) ﬂf(x y)dxdy.

The probability of a location of a system of two random variables (X, y)
into the rectangular domain D={a<x<b,c<y<d}:
bd
Pl(a<x<b,c<y<d)=[]f(x y)dxdy. (31.12)

ac

6. If fl(x), fz(y) are distribution densities of each component, then

:Tf (x, y)dy, fz(y):Tf (x, y)dx

(31.13)
jfl X)dx =1, [ f2(y)dy =1.

7. If components X and Y are independent, then:

f(x, y)=f1(x)- f2(y).
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31.4. Conditional laws of probabilities distribution of a random vector.
A characteristic of a set of independent random variables

31.4.1. Conditional laws of probabilities distribution of a discrete
random vector. Let’'s consider a discrete two-dimensional random variable

Z(X,Y). Possible values of its components are X, X,..., X, and

Y1) You--os Y-
Let’'s suppose as the result of a trial the random variable Y has pos-
sessed the value y; (Y = Y1) then the random variable X can take one of

possible values: X, X5, ..., X,. Let’'s denote the conditional probability that
X =x; under condition Y =Y, as pyl(xi) or p(x;/yy) (i=1n).

In the general case we denote conditional probabilities of the compo-
nent X under condition Y =Yy; as p(xi /yj) (i=1n;j=1m) and condi-
tional probabilities of the component Y under condition X =x; as p(yj IX; )

A conditional distribution of the component X under condition Y = Yj
is called a set of conditional probabilities p(xi /yj) under condition the case
Y = yj has occurred. Similarly to that we define a conditional distribution of

the component Y under condition X = ;.

According to a distribution of a two-dimensional variable Z(X,Y) we
can get conditional laws of a distribution of components X and Y :

for X : p(xi /yj)z%,
for Y : p(yjlxi)zp(p)(i(—;(_y)j).

It is necessary to mark that a sum of probabilities of a conditional distri-
bution of each component equals 1.

31.4.2. Conditional laws of probabilities distribution of a continu-
ous random vector. In the case of continuous distribution of a variable
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Z(X,Y) we have conditional densities of a distribution of the component X
under condition Y = Yy and the component Y under condition X = ;.
A conditional density f;(x/y) of a distribution of the component X

under condition Y = Yj is called a ratio of a density of joint distribution

f(x, y) of a system (X ,Y) to a density of a distribution fz(y) of the compo-
nent Y :

Similarly to that a conditional density f2(y/ X) of a distribution of the

component Y under condition X = X; is defined by the formula:

f2(y/X)= fl(x) :

If a density of joint distribution f(X,y) is known then we can find f;(X)
and f,(y) using the formulas (31.13).
Let's write down the following properties for f;(x/y) and f,(y/x):

+00
f,(x/y)>0, [ fi(x/y)dx =1,
+00
fo(y/x)>0, [ f2(y/x)dy =1.

31.5. Numerical characteristics of joint (consistent) distributions
of systems of random variables: marginal and conditional

A conditional mathematical expectation of a discrete random variable Y
under condition X =X; is called a product of possible values of the compo-

nent Y and their conditional probabilities:
m
M(Y/X =Xi)= Zyj p(yj /XI)
j=1
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A conditional mathematical expectation M(Y /X =x;) is a function

of x,i.e. M(Y/X =x;)= f(x), which is called the regression function of Y

on X.
Similarly to this we have formulas for a conditional mathematical expec-

tation I\/I(X Y :yj) of a discrete random variable X under condition

YZyj:

M(X/Y:yj):éxip(xi/yj), M(X 7Y =y;)=dgl(y).

where g(Yy), which is called the regression function of X on'Y .
For continuous random variables we have:

+00 +0o0
MY/ X =x)= [y-fo(y/x)dy,  M(X/Y =y)= [x-fi(x/y)dx.

31.6. Numerical characteristics of a system of two random
variables. The covariance and the correlation coefficient
of atwo-dimensional random vector

For two-dimensional random variable Z(X,Y) we can find a mathe-
matical expectation and a variance of each component:

M(X)=m,, M()=m,, D(X)=of, D(Y)=07.

However, these characteristics don’t completely characterize the variable
Z(X,Y), therefore they don't indicate the degree of the dependence be-
tween components. This role is fulfilled by the covariance (or the correlation
moment) 1, and the correlation coefficient Iy, .

The covariance (or the correlation moment) s, of random variables
X and Y is called the mathematical expectation of a product of derivations
of these variables from their mathematical expectations:

sty =M{(X - m )y ~m, )
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For calculation of the covariance (or the correlation moment) of discrete
random variables the following formula is used:

Hyxy :ZZ(Xi _mx)<yj —my)p(xi, yj),

for continuous random variables this formula is used:

+00 +00

thy = [ [(x=mNy—m,)f(x, y)dxdy.

—00 —00

The covariance (or the correlation moment) Ly has the following

properties:
1. fyy = Hyx is the symmetric property.

2. pyy =01if X and Y are independent variables.

3. ‘,qu‘SO'XO'y.

4. 1, =D(X).

The correlation moment of random variables X and Y has the dimen-
sion equal to the product of X and Y dimensions.

Along with the correlation moment of random variables X and Y one

often uses the correlation coefficient Iy, which is a dimensionless normalized

variable.

The correlation coefficient r,,, of random variables X and Y is the ra-

Xy
tio of the correlation moment of X and Y to the product of their root-mean-
square deviations (or standard deviations), i.e.

_ My

[, =
OOy

Xy

Properties of the correlation coefficient r y:
1. rxy = ryx.

2. Iy =1and ry, =1.

3, \rxy\sl.
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4. Iy = 0 if X and Y are independent variables, i.e. there is no linear

relation between the random variables.

5. Iy =+1 if there exists the linear correlation dependence between

X and Y.
Recommended bibliography: [5; 7; 11; 12].

Theme 32. Laws of large numbers and central limiting theorem

Let’s consider fundamental theorems of probability theory. We can find
an intuitive way to view the probability of a certain outcome as the frequency
with which the outcome occurs in long run, when the experiment is repeated
a large number of times. We can also define probability mathematically as a
value of a distribution function for the random variable representing the ex-
periment.

32.1. A convergence of sequences of random variables
in a probability and almost surely

Let’s consider basic concepts.
A sequence of random variables X;, X»,,... is said to be converge in

probability to a random variable X if

lim P(X, - X|>¢)=0

n—oo

for each £ >0, i.e. if forany € >0 and 6 >0 there exists a number N, de-
pending on & and J, such that the inequality

P(X, - X|>¢)<s

holds for n> N .
A sequence of random variables X, X5,... is said to be converge
almost surely (or with probability 1) to a random variable X if

P[a)eQ: lim X,(w)= X(a))}:l.

N—o0
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Convergence almost surely implies convergence in probability.

32.2. Inequalities of Markov and Chebyshev. Laws of large numbers and
conditions of their fulfillment

The law of large numbers consists of several theorems establishing av-
erage results and revealing conditions for this stability to occur.

The notion of convergence in probability is most often used for the case
in which the limit random variable X has the degenerate distribution concen-

trated at a point a (P(£ =a)=1) and
1 n
Xn==2Y%,
Ny

where Yj, Y,,... are arbitrary random variables.

A sequence Yi, Y,,... satisfies the weak law of large numbers if the

limit relation
: 10 .
im P||=> Y, —a|>¢ |= lim PQXn—a\Zg):O (32.1)
N—o0 Nk N—o0
holds for any & > 0.Equivalently, lim P(jXn —a\ < 5):1.
N—o0

If the relation

n
P(a)eQ: lim lZYk =a]=P(a)eQ: lim X, =a)=1

n—oo N k=1 n—oo

is satisfied instead of (32.1), i.e. the sequence X, converges to the num-

ber a with probability 1, then the sequence Yj,Y5,... satisfies the strong

law of large numbers.
Let’s consider important inequalities.
Markov inequality. For any nonnegative random variable X that has

an expectation M (.X), the inequality




holds for each £ >0.
Chebyshev inequality. For any random variable X with finite vari-

ance D(X), the inequality

P(X -M(X)<e)<1-

holds for each £ >0.

This inequality gives the possibility to estimate an error if we suppose
that the mathematical expectation is replaced by the average value of
a bounded sample.

Proof. Events [X —M(X)<¢& and |[X —=M(X)>e& form a complete

group of events, i.e.
P(X -M(X)<g)+P(X -M(X)>¢)=1 (32.2)

Let's remember the definition of the variance D(X ):
D(X)=M(X =M(X))* =3.(x =M (X))" - p;.

If we truncate the summands in which |x; — M (X )( <¢, then

D(x)zi(xi—m( W-pi e zp,—g P(X -M(X)>e¢).

Thus, we obtain:

D(X)>&?-P(X =M (X)>¢&)or P(X —~M(X)>e)< D(;()
)
Using the formula (32.2) we have:
P(X -M(X)<e)=1-P(X ~M(X)>¢)>1- D(f).

&

The law of large numbers gives a relation between the probability P(A)
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. . m .
of a random event A and its relative frequency — with a large number of re-
n

peated experiments.
Chebyshev theorem. If X3, X5,..., X, is a sequence of independent

random variables with uniformly bounded finite variances (D;(X)<D,
D,(X)<D, ..., D,(X)< D) then the limit relation

n n
lim P[—in —lzm(xi){gj:l
N—oo ni:]_ ni:]_

holds for each £ >0.
Bernoulli theorem. Let m,, be the number of occurrences of an event
A (the number of successes) in n independent trials and let p= P(A) be

the probability of the occurrence of the event A (the probability of success) in
each of the trials. Then the sequence of relative frequencies m,/n of the

occurrences of the event A in n independent trials converges in probability
to p=P(A)as n— oo, i.e. the limit relation

lim P( < gj =1
nN—o0

32.3. A convergence in distribution and a weak convergence

mn
—t-p
n

holds for each £ > 0.

Let's suppose that a sequence Fy(x), F5(X),..., Fy(X) of cumulative

distribution functions converges to a distribution function F(x), i.e.
lim F,(x)=F(x)
N—o0

for every point X at which F(X). In this case, we say that the sequence
X1, Xy,..., X, of the corresponding random variables converges to the
random variable X in a distribution.
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A sequence Fy(x), F5(x), ..., F,(X) of cumulative distribution functions

weakly converges to a distribution function F(X) if:
lim M(g(X,))=M(g(X))
N—00

for any bounded continuous function g as N — oo.

Convergence in distribution and weak convergence of cumulative dis-
tribution functions are equivalent.

32.4. Central limit theorem. Lyapunov theorem for sequence
of an independent identically distributed random variable

A sequence X, of random with distribution function Fy is called as-

ymptotically normally distributed if there exists a sequence of pairs of real

numbers My, O'ﬁ such that the random variables:

Xn —My
On
converge in probability to a standard normal variable. This occurs if and only

if the limit relation:

X,—a

On

Nn—oo

im P[a <Xnma ,Bj _o(p)-o(a)

where CD(X) is Laplace cumulative distribution function (appendix B), holds
forany a and f (a < f).

Lyapunov theorem. If X3, X,,..., X, is a sequence of independent
random variables satisfying the Lyapunov condition:

n

>va(X;)

lim =L =0,
n—oo | N

ZJXXO

1=



where v5(X;) is the third initial moment of the random variable X;, then the

> (Xi =M(X;))

i=1

sequence of random variables Y, = converges in distribu-

ga(xo

tion to the normal law, i.e. the following limit exists:

lim P| 1= <X |=d(x).

N—»o0 n

Central limit theorem. Let m, be the number of occurrences of an

event A (the number of successes) in n independent trials and let p = P(A)
be the probability of the occurrence of the event A (the probability of suc-
cess) in each of the trials. Then the sequence of relative frequencies m,, /n
of the occurrences of the event A in n independent trials has an asymptoti-
cally normal probability distribution with parameters (p, p(l— p)/ n).

Let X;, X»,..., X, be a sequence of independent identically distribut-

ed variables with finite mathematical expectation M (X i )= a and finite vari-

n

: 1 :
ance . Then as N —> oo the random variable —Z X; has an asymptotical-
Nz

ly normal probability distribution with parameters (a, a2l n).
This theorem can be interpreted as stating for large n, i.e. the se-
quence X, of random variables approximately has a normal distribution with

mean a and standard deviation o /~/n.
Recommended bibliography: [5; 6; 7; 9; 11].
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Theoretical questions

1. A stochastic experiment. A random event. A probabilistic space.
2. An outcome. An impossible event. A sure event.
3. Equally likely events. Elementary events.
4. An intersection, a union, a difference of events.
5. Theorem of a sum of compatible events.
6. Theorem of a sum of incompatible events.
7. A classical definition of a probability.
8. A geometrical definition of a probability.
9. A statistical definition of a probability.
10. Permutations, arrangements, combinations with repetitions.
11. Permutations, arrangements, combinations without repetitions.
12.The rule of a sum.
13. The rule of a product.
14. Inclusion-exclusion principle.
15. A conditional probability.
16. Theorem of a product for dependent events.
17.Theorem of a product for independent events.
18. A notion of a pairwise independence of random events.
19. A complete group of events.
20. Formulas of a total probability and Bayes.
21. Repeated independent trials.
22.Bernoulli’'s scheme.
23. A binomial distribution.
24.The most probable number of successes and its probability.
25. Local theorem of Moivre—Laplace.
26. Integral theorem of Moivre—Laplace.
27.Poisson’s theorem.
28. Probability of deviation of relative frequency from probability.
29. A definition of random variables and their classification.
30. A distribution law of a discrete random variable.
31.The numerical characteristics of a distribution: a mathematical expecta-
tion, a variance, a root-mean-square deviation, initial and central moments, a
mode, a median.
32.Binomial distribution law and its characteristics.
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33. Geometric distribution law and its characteristics.

34. Hypergeometric distribution law and its characteristics.

35. Poisson distribution law and its characteristics.

36. Negative binomial distribution law and its characteristics.

37. A definition of continuous random variables.

38. A definition of absolutely continuous random variables.

39. Distribution function of probabilities of random variables and its proper-
ties.

40. A density of distribution and its properties.

41. Distribution density functions of absolutely continuous random variables.
42.Numerical characteristics of absolutely continuous random variables and
their properties.

43. A uniform law of probabilities distribution and its numerical characteristics.
44. An exponential law of distribution and its numerical characteristics.

45. A normal law of probabilities distribution and its standard representation.
46. Gamma-distribution.

47.Chi-square distribution of Student and its relationship with a standard
normal law.

48. Chi-square distribution of Fisher and its relationship with a standard nor-
mal law.

49. A random vector. A system of two random variables.

50. A discrete random vector.

51. A continuous random vector.

52.Numerical characteristics of consistent distributions of systems of random
variables: marginal and conditional.

53. A covariance of a two-dimensional random vector.

54. A correlation coefficient of a two-dimensional random vector.

55. A convergence in probability.

56. An almost surely convergence.

57.Inequality of Markov. Inequality of Chebishev.

58. Laws of large numbers and conditions of their fulfillment.

59. Chebyshev theorem. Lyapunov theorem.

60. Bernoulli theorem.

61. A convergence in distribution and a weak convergence

62. Central limit theorem.
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Appendices

Appendix A

(to be continued)

X2

Values of Laplace differential function gp(x): Le 2

V2r
X 0 1 2 3 4 5 6 7 8 9

0,0 10,3989|0,3989|0,39890,3988|0,3986|0,39840,3982|0,3980|0,3977|0,3973
0,1 |0,3970|0,3965|0,3961|0,3956|0,3951|0,3945|0,3939|0,3932|0,3925|0,3918
0,2 ]0,3910/0,3902|0,38940,3885|0,3876|0,3867|0,3857|0,3847|0,3836|0,3825
0,3 |0,3814|0,3802|0,3790|0,3778/|0,3765|0,3752|0,3739|0,3726|0,3712|0,3697
0,4 10,3683|0,3668|0,3652|0,3637|0,3621|0,3605|0,35890,3572|0,3555|0,3538
0,5 ]0,3521|0,3503|0,3485|0,3467|0,3448|0,3429/0,3410(0,3391|0,3372|0,3352
0,6 ]0,3332/0,3312|0,3292/0,3271|0,3251|0,3230{0,3209|0,3187|0,3166|0,3144
0,7 10,3123|0,3101|0,3079|0,3056|0,3034|0,3011|0,29890,2966|0,2943|0,2920
0,8 10,2897|0,2874|0,28500,2827|0,2803|0,2780|0,2756|0,2732|0,2709|0,2685
0,9 [0,2661|0,2637|0,2613|0,2589|0,2565|0,2541|0,2516|0,2492|0,24680,2444
1,0 0,2420|0,2396|0,2371|0,2347|0,2323|0,2299|0,2275|0,2251|0,2227|0,2203
1,1 |0,2179|0,2155|0,2131|0,2107|0,2083|0,2059|0,2036|0,2012|0,1989|0,1965
1,2 0,1942|0,1919/0,1895/|0,1872|0,1849|0,1826|0,1804|0,1781|0,1758|0,1736
1,3 |0,1714|0,1691/0,1669|0,1647|0,1626|0,1604|0,1582|0,1561|0,1539|0,1518
1,4 0,1497|0,1476|0,1456|0,1435|0,1415|0,1394|0,1374|0,1354|0,1334|0,1315
1,5 0,1295|0,1276|0,1257|0,1238|0,1219|0,1200|0,1182|0,1163|0,1145|0,1127
1,6 |0,1109|0,1092/0,1074|0,1057|0,1040(0,1023|0,1006|0,0989|0,0973|0,0957
1,7 0,0940|0,0925|0,0909|0,0893|0,0878|0,0863|0,0848|0,0833|0,0818|0,0804
1,8 |0,0790|0,0775(0,0761|0,0748|0,0734|0,0721|0,0707|0,0694 |0,0681|0,0669
1,9 |0,0656|0,0644/0,0632|0,0620|0,0608|0,0596|0,0584|0,0573|0,0562|0,0551
2,0 10,0540/0,0529|0,0519|0,0508|0,0498|0,0488|0,0478|0,0468|0,0459|0,0449
2,1 10,0440/0,0431|0,0422|0,0413/0,0404|0,0396|0,0387|0,0379|0,0371|0,0363
2,2 10,0355|0,0347|0,0339|0,0332|0,0325|0,0317|0,0310(0,0303|0,0297|0,0290
2,3 10,0283|0,0277|0,0270|0,02640,0258|0,0252|0,0246|0,0241|0,0235|0,0229
2,4 10,0224|0,0219|0,0213|0,0208|0,0203|0,0198|0,0194|0,0189|0,0184|0,0180
2,5 10,0175/0,0171|0,0167|0,0163|0,0158|0,0154|0,0151|0,0147|0,0143|0,0139
2,6 10,0136|0,0132|0,0129|0,0126|0,0122|0,0119/0,0116(0,0113|0,0110|0,0107
2,7 10,0104|0,0101|0,0099|0,0096|0,0093|0,0091|0,0088|0,0086|0,0084|0,0081
2,8 10,0079|0,0077|0,0075|0,0073|0,0071|0,0069|0,0067|0,0065|0,0063|0,0061
2,9 10,0060/0,0058|0,0056|0,0055|0,0053|0,0051|0,0050(0,0048|0,0047|0,0046
3,0 |0,0044(0,0043/0,0042|0,0040|0,0039|0,0038|0,0037|0,0036|0,0035|0,0034
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Appendix A (the ending)

3,1
3,2
3,3
3,4
3,5
3,6
3,7
3,8
3,9

0,0033
0,0024
0,0017
0,0012
0,0009
0,0006
0,0004
0,0003
0,0002

0,0032
0,0023
0,0017
0,0012
0,0008
0,0006
0,0004
0,0003
0,0002

0,0031
0,0022
0,0016
0,0012
0,0008
0,0006
0,0004
0,0003
0,0002

0,0030
0,0022
0,0016
0,0011
0,0008
0,0005
0,0004
0,0003
0,0002

0,0029
0,0021
0,0015
0,0011
0,0008
0,0005
0,0004
0,0003
0,0002

0,0028
0,0020
0,0015
0,0010
0,0007
0,0005
0,0004
0,0002
0,0002

0,0027
0,0020
0,0014
0,0010
0,0007
0,0005
0,0003
0,0002
0,0002

0,0026
0,0019
0,0014
0,0010
0,0007
0,0005
0,0003
0,0002
0,0002

0,0025
0,0018
0,0013
0,0009
0,0007
0,0005
0,0003
0,0002
0,0001

0,0025
0,0018
0,0013
0,0009
0,0006
0,0004
0,0003
0,0002
0,0001
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Appendix B
(to be continued)
2

Values of Laplace cumulative distribution function ® e 2dt

1
(X):E

O — X
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6

7

8

9

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

11
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
2,0

2,1
2,2
2,3
2,4
2,5
2,6
2,7
2,8
2,9
3,0

0,0000
0,0398
0,0793
0,1179
0,1554
0,1915
0,2258
0,2580
0,2881
0,3159
0,3413

0,3643
0,3849
0,4032
0,4192
0,4332
0,4452
0,4554
0,4641
0,4713
0,4772

0,4821
0,4861
0,4893
0,4918
0,4938
0,4953
0,4965
0,4974
0,4981
0,4986

0,0040
0,0438
0,0832
0,1217
0,1591
0,1950
0,2291
0,2612
0,2910
0,3186
0,3438

0,3665
0,3869
0,1049
0,4207
0,4345
0,4463
0,4564
0,4648
0,4719
0,4778

0,4826
0,4864
0,4896
0,4920
0,4940
0,4955
0,4966
0,4975
0,4982
0,4986

0,0080
0,0478
0,0871
0,1255
0,1628
0,1985
0,2324
0,2642
0,2939
0,3212
0,3461

0,3686
0,3888
0,4066
0,4222
0,4357
0,4474
0,4573
0,4656
0,4726
0,4783

0,4830
0,4868
0,4898
0,4922
0,4941
0,4956
0,4967
0,4976
0,4982
0,4987

0,0120
0,0517
0,0910
0,1293
0,1664
0,2019
0,2356
0,2673
0,2967
0,3238
0,3485

0,3708
0,3906
0,4082
0,4236
0,4370
0,4484
0,4582
0,4664
0,4732
0,4788

0,4834
0,4871
0,4901
0,4924
0,4943
0,4957
0,4968
0,4977
0,4983
0,4987

0,0160
0,0557
0,0948
0,1331
0,1700
0,2054
0,2389
0,2704
0,2996
0,3264
0,3508

0,3729
0,3925
0,4099
0,4251
0,4382
0,4495
0,4591
0,4671
0,4738
0,4796

0,4838
0,4874
0,4903
0,4927
0,4945
0,4958
0,4969
0,4977
0,4984
0,4988

0,0199
0,0596
0,0987
0,1368
0,1736
0,2088
0,2422
0,2734
0,3023
0,3289
0,3531

0,3749
0,3944
0,4115
0,4265
0,4394
0,4505
0,4599
0,4678
0,4744
0,4798

0,4842
0,4878
0,4906
0,4929
0,4946
0,4960
0,4970
0,4978
0,4984
0,4988

0,0239
0,0636
0,1026
0,1406
0,1772
0,2123
0,2454
0,2764
0,3051
0,3315
0,3554

0,3770
0,3962
0,4131
0,4274
0,4406
0,4515
0,4608
0,4686
0,4750
0,4803

0,4846
0,4881
0,4909
0,4930
0,4948
0,4961
0,4971
0,4979
0,4985
0,4988

0,0279
0,0675
0,1064
0,1443
0,1808
0,2157
0,2486
0,2794
0,3078
0,3340
0,3577

0,3790
0,3980
0,4147
0,4292
0,4418
0,4525
0,4616
0,4693
0,4756
0,4808

0,4850
0,4884
0,4911
0,1932
0,4949
0,4962
0,4972
0,4980
0,4985
0,4989

0,0319
0,0714
0,1103
0,1480
0,1844
0,2190
0,2518
0,2823
0,3106
0,3365
0,3599

0,3810
0,3997
0,4162
0,4306
0,4430
0,4535
0,4625
0,4700
0,4762
0,4812

0,4854
0,4887
0,4913
0,4934
0,4951
0,4963
0,4973
0,4980
0,4986
0,4989

0,0359
0,0754
0,1141
0,1517
0,1879
0,2224
0,2549
0,2852
0,3133
0,3389
0,3621

0,3830
0,4015
0,4177
0,4319
0,4441
0,4545
0,4633
0,4706
0,4757
0,4817

0,4857
0,4890
0,4916
0,4936
0,4952
0,4964
0,4973
0,4981
0,4986
0,4990
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3,1
3,2
3,3
3,4
3,5
3,6
3,7
3,8
3,9

0,4990
0,4993
0,4995
0,4997
0,4998
0,4998
0,4999
0,4999
0,5000

0,4990
0,4993
0,4995
0,4997
0,4998
0,4998
0,4999
0,4999
0,5000

0,4991
0,4993
0,4995
0,4997
0,4998
0,4998
0,4999
0,4999
0,5000

0,4991|0,4991|0,4992
0,499410,4994|0,4994
0,4996|0,4996|0,4996
0,4997|0,4997|0,4998
0,4998|0,4998|0,4998
0,4998|0,4998|0,4998
0,4999|0,4999|0,4999
0,4999|0,4999|0,5000
0,5000(0,50000,5000

0,4992
0,4994
0,4996
0,4998
0,4998
0,4999
0,4999
0,5000
0,5000

0,4992
0,4994
0,4996
0,4998
0,4998
0,4999
0,4999
0,5000
0,5000

0,4992
0,4995
0,4997
0,4998
0,4998
0,4999
0,4999
0,5000
0,5000

0,4993
0,4995
0,4997
0,4998
0,4998
0,4999
0,4999
0,5000
0,5000
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