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Abstract — The aim of this brief 
communication is to is to study of the 
solutions’ behavior for a wide class of 
nonlinear partial differential equations 
through the use of a new approach that has 
been proposed in [1]. 
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The mathematical formulation of the 
problem of given paper: to prove that the 
Cauchy problem for parabolic equation has 
shrinking property of support of the solutions. 
This is an important problem in terms of 
applied mathematics and mathematical 
physics. On order to achieve this goal the 
following tasks were solved: 

 to get integral estimates linking 
different norms of solution; 

 to reduce integral relationship tо non-
differential inequality and to analyze of this 
inequality; 

 to establish the property of shrinking 
of the support. 

Let consider the problem
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We know that a problem has the 
instantaneous compactification property, if for 

any 0t   the support of the solution  ,u x t  

is bounded even if it is unbounded for 0t  . 
Main result of this brief communication is is 
the following theorem. 
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has the instantaneous compactification 
property. 
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called the function such that  ,u x t   
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Note here, that the existence of solutions in the 
above sense is well known if 1 p  and 

0 p    see 2 4.  

In order to proof the Theorem about 
compactification  of solutions’ support of the 
problem (1), (2) we need well-known 
Gagliardo-Nirenberg interpolation inequality, 
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which will be given below, besides statement:  

Lemma. If ( , )f s  – is positive, increasing 

function, which satisfies the inequality 
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each 0 0, , 1, 0, 0s s         , then: 
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This Lemma that is not a trivial fact and 
therefore requires a strict mathematical proof 
which you can find in for example in [1]. So, 
let 
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If we show that for 0     :s     
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then 

(thanks to the Lemma) we will obtain the 
Theorem. Thus, it is enough to show: 

 0, 0, ,TH s s  

 , , 0, 0, 0 1.H H s H H           

 Let substitute 1pv u   into integral identity 

and integrating by parts 
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For the right-hand side of (4) we apply 
Young’s inequality with : 
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and 

involve Young's inequality: 
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Integration leads to the inequality: 
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We return back to the integral identity 

with test function  1 , 0,p
lv u t l    
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 from which and (5) we have: 
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According to the definition of  ,x t  and 

previous compute, we obtain several 
inequalities, which are crucial: 
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By the definition of energy function :TE  
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Substitute (7) into (9) and using (8), (6)  we 
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obtain that  

   1
1, , , ,TE s s cR s s          .   (10) 

Starting from this place we should 
distinguish three possible cases p  takes.  

 
In the case 1p   we have identity 

   , ,T TI s E s   and proof is trivial, 

because it is immediately follows  
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thanks to Lemma we have result of Theorem. 
 
Case 1.p   Put into integral identity 

1, 1, 2.p p        After integrating 

in t , using the Holder inequality   
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Using result of (10) to the last estimate we 
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We apply the last inequality to ratio (11), so
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Now add (10) and (12), use definition 
of the function
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monotone, we come to inequality 
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In case 0 1p   it is easy (using the 

same approach) to obtain an inequality 
analogous to (13), which is to complete 
series of compute of our proof, but, of 
course, with other index, namely, 
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