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Abstract — The aim of this brief
communication is to is to study of the
solutions’ behavior for a wide class of
nonlinear partial differential equations
through the use of a new approach that has
been proposed in [1].
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The mathematical formulation of the
problem of given paper: to prove that the
Cauchy problem for parabolic equation has
shrinking property of support of the solutions.
This is an important problem in terms of
applied mathematics and mathematical
physics. On order to achieve this goal the
following tasks were solved:

to get integral estimates linking
different norms of solution;

to reduce integral relationship to non-
differential inequality and to analyze of this
inequality;

to establish the property of shrinking
of the support.

Let consider the problem

0 -1 Ou _
u, —Z“g(Wur 1§]+|u|l "u =0,>0,()

u(x,0)=u,(x), xel”, (2)
We know that a problem has the
instantaneous compactification property, if for
any ¢>0 the support of the solution u(x,?)
is bounded even if it is unbounded for 7 =0.
Main result of this brief communication is is

the following theorem.
Theorem. In both of the cases

> 0<A<l, p=1;
> 0<A<p,

n-—2

if

<p<l, when n>2, and in case
n+2

0<p<l1, when n<2 the problem (1), (2)
has the instantaneous compactification

property.
Proof of the Theorem. For any numbers
0<r7,<7,<T, 0<s, <s, <o, define by

Q(sl)z{xeR": |x|>s1};

Gy (5,)=Q(s,)x(7,7,);

K:Z (sl, sz—sl)zG;2 (Sl)\G:]Z (sz).

Let us fix 7>0,5s>0,Ar>0,As >0 and
n(x,t)in(x): n=11in G.,,, (s+As); n =1
in Q(s+As),7=0 in R"x(0,T)\G! (s),

m=0 in  0"\Q(s). Suppose that
c c c .
Oﬁnk_g, 1, SE’ T, SE; n, =0 if

rt+Ar<t<T and Vp=0 if |[x|>s+As. As

well-known an energy solution of (1), (2) is
called the function such that u(x,t)e

C((0.7);L, (R")) Ly, ((0.7): 7, (R"))
NL, ., (R” x(0,T )) and satisfies identity ith
velL, (0" x(0.7))nwl, (0" x(O,T)éZ')

'[u(x,]}))v(x,ﬂ))dx—;f [u(x,t)vt(x,t)dxdt+

on

Ty
I I [|Vu|p71 u.v, -|-|u|/H uv}dxdt = Iuov(x,O)dx.
00" "
Note here, that the existence of solutions in the
above sense is well known if 1<p and
0<A<p seel2 4].

In order to proof the Theorem about
compactification of solutions’ support of the
problem (1), (2) we need well-known

Gagliardo-Nirenberg interpolation inequality,
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which will be given below, besides statement:

Lemma. If f(r,s) — is positive, increasing
function, which satisfies the inequality
f(r+f“ (7,s),s+f7 (r,s))Séf(r,s) for
each 7>7,,5>s,,0>La>0,4>0, then:
f(z,s)=0 for all (z,s) such that:

fe (Toaso)a

T>Z‘0+1 57

1
-5 S (7:50)-

5> 8+

This Lemma that is not a trivial fact and
therefore requires a strict mathematical proof
which you can find in for example in [1]. So,
let

ET(T,S)= .[ uzdxdt,IT(r,s): j |u|p+ldxdt.

G (s) Gi (s)

If we show that for V7 >0 Hs(r)<oo

H=H,(z,s)=E (r,s)+1;(r,s)=0, then
(thanks to the Lemma) we will obtain the
Theorem. Thus, it is enough to show:

H.(0,5) >0, s—> oo,

H(r+H“,s+H”)S,uH,a>0,,B>0,0<y<1.

Let substitute v=un”"" into integral identity
and integrating by parts

—j (x,T)n"" (x,T) dx+j.[|Vu| n"* dxdt
0"

+I [l

T

J-“Vurﬂ u, ur, )’ dxdt (4)
0 R"

T
n"dxdt = (p+1) j j %uzn,n”dxdt +
0 R"

For the right-hand side of (4) we apply
Young’s inequality with &:

J‘uzn"”dx+ J‘ (|Vu|p+l |

Q(s) G (s)
<c[l, +E;|=cR. (5)
Let us Gagliardo-Nirenberg inequality use

o )np”dxdt <

under ¢ =2, f=p+1, y=A4+1:

A\ % o

where
l:@[L—lj+(1—®)l, y>1,A>1 and
a p n ¥

involve Young's inequality:

1-v
[ J. uzde <c J. (|Vu|p+l+|u|/1+l)dx,
Q(s) Q(s)

(p+1)(1-2)

ith 5° 0,v= 1.
with 5 >, >0,v 2(p+1)+n(p—A) <
Integration leads to the inequality:

1-v
‘I’:,.S..(l—v)::r[ _[ udeJ dt <
" Lal)
.[ (|Vu|p+1 ||l+l)dxdt.

Gi (5)
We return back to the integral identity
with test function v=un""y,(t), >0,

;a(f)—j[f

0 Q(s)

Xl (T)= ZI(T) I u277p+1dx+

als)
+ |:2| | P+l 2(77P+1)t:|;(1(t)dxa’t+
GI(s)

+ '[ [2|Vu| u, (unP“)x};(,(t)dxdt,

G (s)
from which and (5) we have:
2(T)<cy;(T)R™  for some [>6>0.

According to the definition of #(x,7) and

!
uzn‘”“dxj dt and obtain:

previous compute, we obtain several
inequalities, which are crucial:
‘PQM s+As (l) <X (T) < \PZ,s (l)’
Y (1-v)<cR (s,As,7,A7), (6)
1(T)<ex, (TR (s,As,7,A7), (7)
2, (T)< ¥ (1=v). ®)

By the definition of energy function E, )
‘PQM A (1) =E, (r +A7T,5+ As) <z (T) 9)
Substitute (7) into (9) and using (8), (6) we
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obtain that
E, (z’+Az’,s + As) <cR™ (s,As,z’,Az') . (10)

Starting from this place we should
distinguish three possible cases p takes.

In the case p=1 we have identity

I, (T,S) =k, (T,S)
because it is immediately follows
Vr>03s(r)<oo:H =H,(7,5)=E (7,5)+

+1; (T,S) =2-FE, (T,S), thus, by (10) and
thanks to Lemma we have result of Theorem.

and proof is trivial,

Case p>1. Put into integral identity
a=p+1, f=p+1,y=2. After integrating

in ¢, using the Holder inequality
o

I (z+A7,s+As)<c J. |Vu|p+l dxdt

Gl . (s5+As)

1-6,
p+l1
(\IIZ+AZ',S+AS ( 2 jj ’ (1 1)

here 6 = n(p=1)
20p+D)+n(p-1)

(6) (8) under 1=1+Tp and =1-v lead to

<1.Inequalities

the following correlation
I+p

\PZ+Ar,s+AS (pTHj < ClPZ_:S (1 — V)R12—1+v .
Using result of (10) to the last estimate we

l+p
(p_—i-lj <cR™.
2

We apply the last inequality to ratio (11), so
I (t+A7,s+As)<cR™,

_ - 12
v, :(1—01)(%1+vj:v(lpi—/{1)>v. (12

Now add (10) and (12), use definition
of the function R,,

obtain: ¥’

T+AT,s+As

H, (I+AT,S+AS)S

(ArET (T’S))V

(AT)1+V

(ATET (r,s))vl

(A T)I-H/l

<cAE, (7,5)

(ASIT (z‘,s))vl (AXIT (Z‘,S))V

(AS)(Ier)(lJrVI) + (AS)(1+p)(1+v)

+c,A 1, (Z’,S)

where
ATf(T,S)iZf(T,S)—f(T-l-AT,S),
Axf(t,s) = f(T,S)—f(T,S—i—AS).

14

Now let us fix As=(I(7,s))r00,

Ar=(E,(z,s))*. As E and [ are
monotone, we come to inequality

v 14

H, r+HT1TV(r,s,),S+H§H”)(HV)(T,s) <

<uH, (T,S). (13)

In case 0< p<1 it is easy (using the

same approach) to obtain an inequality
analogous to (13), which is to complete
series of compute of our proof, but, of
course, with other index, namely,
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