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STUDY OF TRANSPORTATION PROBLEM  

WITH FICTITIOUS COSTS  

USING A GENETIC ALGORITHM IN MATLAB 

 
Summary 
A transportation problem with fictitious costs is a linear programming problem 

with a discontinuous objective function. The chapter provides the possibility of 
transposing this problem to the problem of integer linear programming. The 
authors’ starting point was Balinski’s method. However, this approach allows 
solving problems only by approximate methods. In this connection, the authors 
propose to solve the problem using the genetic algorithm of the software 
environment MATLAB. At the same time, they were supposed to develop their 
unique functions of crossing, mutation and population. In the current chapter, the 
situational economic transportation problem is presented through an example 
where the authors show the basic aspects of its solution. Namely, a mathematical 
model was developed and a numerical experiment was performed in MATLAB, 
which shows a fairly good result. 

 
Introduction 

Almost all large companies have departments of logistics. As it is well known, 
logistics solves such problems as reducing supply chain transportation costs, 
choosing the shortest path problems, the improved transit times, simplifying the 
delivery schemes, reducing additional transportation costs. Transportation costs 
can be significant parts of a company’s overall logistics spend [1]. Minimizing 
transportation routes [2] and improving transit times [3; 4] are two other ways to 
improve the economic efficiency of companies’ transportation. Simplifying the 
delivery schemes means to develop models for calculating comparable combined 
internal and external costs of intermodal and road freight transport networks. 
Wherein, it is usually considered that internal costs consist of the operational-
private costs borne by the transport and intermodal terminal operators, and the time 
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costs of goods tied in transit. And the external costs include the costs of the 
impacts of both networks on society and the environment such as local and global 
air pollution, congestion, noise pollution, and traffic accidents [5; 6]. 

For all the above problems, a mathematical tool − what is called transportation 
problem − has been developed [7]. The transportation problem is one of the 
subclasses of linear programming problem where the objective is to transport 
various quantities of a single homogeneous product that are initially stored at 
various origins, to different destinations in such a way that the total transportation is 
minimum. The classical transportation problem belongs to the class of T-problems 
and its solution does not cause any difficulty. However, the modern growth of large 
companies’ economic activity has generated a lot of new transportation problems, 
mathematical modelling and software implementation of which still causes 
embarrassments in their solutions. These tasks include: transportation problems 
with limited capacity (Td-task), problems with heterogeneous cargo, multi-index 
problems, transportation problems by the time criterion, etc. A transportation 
problem with fictitious costs is the most difficult of them [8]. This is due to the fact 
that this is a problem of integer linear programming with a discontinuous cost 
function. 

Theoretically, any general mixed integer programming solution methods can be 
used to solve this kind of problem, for example, branch and bound method. 
However, these methods are generally inefficient and computationally expensive 
for the problems with large size. According to research [9−11], such problems of 
integer linear programming with discontinuous cost functions can be investigated 
and solved using genetic algorithms. Many prior works have been done only on 
the applications of recommender systems, but there are a lot of works that give 
practical decisions of these problems. For example, Huang et al (2015) used 
genetic algorithms to solve carpool service problems in cloud computing. They 
utilized the concept of Genetic-based Carpool Route and Matching Algorithm 
(GCRMA). Mesbah et al (2011) used a genetic algorithm to optimize transit 
priority in transportation problem. They offered a parallel genetic algorithm, 
which has considerably shorter execution time. Lau et al. (2010) used genetic 
algorithms to solve the multidepot vehicle routing problem. They proposed to use 
a stochastic search technique called Fuzzy Logic Guided Genetic Algorithms 
(FLGA). The short review of the literature shows that the use of genetic 
algorithms is individual: the genetic approach for optimization does not have the 
character of universality in general. The main processes of genetic algorithms 
(mutation, crossover, and selection) are created as functions or are modified in 
accordance with the specific formulation of the problem by many scientists. 
According to [12], different problems usually have different data structures or 
genetic representations. Others scientists (Solomon, Thompson, Psaraftis, Russell, 
Antes, Derigs, Cordone, Wolfer-Calvo, Caseau, Laburthe, Bräysy, Rochat, 
Taillard, Chiang, Cordeau, Thangiah, Homberger, Gehring, Mester, Barkaoui, 
Csiszár, Van Henlenryck and others) agreed that new economics transportation 
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problem with a discontinuous cost function needs new modification in existing 
algorithms [13−15]. 

In connection with the foregoing, the study of transportation problems with 
fictitious costs as problems of integer programming with discontinuous cost 
functions is still relevant. The need to solve such transportation problems by 
minimizing the transportation costs is determined by the great economic effect 
since this clearly increases the profit of the enterprise. Exact methods for solving 
transportation problems enable us to find solutions for only problems of small 
dimension. To solve problems of large dimension, exact methods are not 
effective due to their large time costs. However, right now, effective algorithms 
for solving large-scale problems are required since currently globalization 
processes in the economy have been observed. This gives a rise to the search for 
solutions in the field of the possibility of applying genetic algorithms for 
optimization problems. 

The subject of this monograph is transportation problem with fictitious costs as a 
transportation problem of large dimension with a discontinuous cost function. 

The paper focuses on the mathematical and digital models of the transportation 
problem. For this type of problem, there are given general content and 
mathematical statements, a specific example and its solution. 

The purpose of the study is to develop a modification of the main functions of 
the genetic algorithm (selection, crossover, and mutation) in accordance with the 
specifics of the problem. This work presents software-algorithmic modules for 
solving the transportation problem based on the genetic algorithm of the built-in 
function of the MATLAB software environment. This presents an enormous 
practical value of this work and can be further usable for graduate students, young 
scientists and specialists in the field of genetic algorithms. 

 
Part 1. Description of the problem 

A transportation problem with fictitious costs means a problem with a 

discontinuous cost function. As in the classical transportation problem, let  

denote sources and let  denote destinations. Let the quantities be given: 

ia  − the amount of supply available at source i; 

 − the demand required at destination j. 

We need to find  (the quantity transported from source i to destination j), 

which satisfies natural transport bounds: 
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         . (2) 

Each  in (2) has the form 

       . (3) 

There  is the cost of transporting one unit between source i and destination j. 

The numbers  can be interpreted as the rent of transport (do not depend on the 

loading of vehicles) or the cost of building a highway from the source i to the 
destination j (does not depend on future units). 

The problem (1) − (3) is called a transportation problem with fictitious costs, or 

an inhomogeneous transportation problem. It is clear that if all  then the 

problem turns into a classical transportation problem. Otherwise, this problem, due 
to the discontinuity of each term (3) at zero, drops out of the framework of linear 
programming altogether. However, by introducing additional integer variables, it 
can be reduced to a partially integer linear programming problem. 

The method of such information was indicated by M. L. Balinski [16]. It 
consists of the following. Let us find the quantities 

 , .     (4) 

We consider the minimization problem 

       (5) 

taking into account conditions (1) and the additional condition 

        . (6) 

The partially integer-valued problem (1), (5), (6) turns out to be equivalent to 

the original problem (1) − (3). Indeed, for  by (6)  will be 

automatically, and for  the inequalities (6) become redundant, since in any 

admissible plan of the transportation problem the conditions  are always 

satisfied. On the contrary, if  in some optimal plan of problem (1), (5), (6) 

then the corresponding  must be zero (if it turns out to be positive, the plan will 
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not be optimal, since by decreasing this  we do not break bounds and give the 

objective function (5) a smaller value). Finally, if , then, by conditions (6), 

 can be only 1. 

Thus, the integer variables  in this formulation match the construction of 

highways between i and j (or, depending on the interpretation, the rent of transport 
for this highway) and movement between source i and destination j. 

Based on this information, an approximate method of solving the transport 
problem with fictitious costs is described in [16]. 

We now consider a more general model with an inhomogeneous discontinuous 
objective function. The authors formulated it in terms close to the problem of 
mixtures, although such an interpretation is not the only possible one. We denote 

the components of the mixture by . The components of this mixture we 

denote by . Let the quantities be given: 

 − the components of the mixture; 

ib  − lower bounds of each element of the mixture; 

 − j-component purchase cost; 

 − fixed price of the j-component, which not depend on the quantity ordered. 

It is required to compile the cheapest mixture that satisfying the given bounds. 

We denote the required quantities of components by . Then the problem can be 

represented as the minimization problem 

         (7) 

under conditions 

       , (8) 

where 

      . (9) 

The authors want to remind that the requirement of integer-valuedness on the 

variables  is not imposed. 

This problem can be reduced to a general partially integer linear programming 
problem. Let us suppose, in addition to the conditions (8), the upper bounds for the 
variables are also given: 
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.        (10) 

We consider the minimization problem 

         (11) 

with the conditions (8) and the additional condition 

       . (12) 

The equivalence of the partially integer-valued problem (11), (8), (12), and the 
original problem are established by arguments completely analogous to those in 
[10, 13, 16] they can be left to the reader. 

We note that the possibility of reducing tasks with a discontinuous objective 
function to partially integer ones is based on the presence of upper bounds for 
variables. This technique is a general characteristic of integer programming. In the 
transportation problem, these boundaries are determined internally (see (4)); in the 
general problem, they must be postulated or defined in a special way. In some 

cases, the boundaries are calculated simply; for example, if all  we can take 

 which is describing by the formula: 

        , (13) 

where the minimum is taken for all i for which . 

Balinski’s method gives an approximate value for each of the variables, and in 
addition, it gives an upper and lower bound for the optimal value of the objective 
function. Unfortunately, it gives no indication of how the approximate solution is 
close to the optimal solution, and one has no way of predicting how the upper and 
lower bounds are close to the optimal solution. For that reason, the authors find it 
expedient to apply the genetic algorithm to the solution of transportation problem 
with fictitious costs, similar to a number of works [8−13]. However, the authors 
plan to use built-in MATLAB function − gamultiobj that uses to create a set of 
points on the Pareto front. Gamultiobj uses a controlled, elitist genetic algorithm 
(a variant of NSGA-II [17]). An elitist genetic algorithm always favours 
individuals with better fitness value (rank). A controlled elitist genetic algorithm 
also favours individuals that can help increase the diversity of the population even 
if they have a lower fitness value. However, based on the specifics of the 
mathematical formulation of this problem, the authors see it necessary to develop 
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unique algorithms for the three main processes of the genetic algorithm: crossing, 
selection, and mutation. 

 
Part 2. Genetic algorithms in MATLAB 

The first main task of this section is to expand each parameter of the genetic 
algorithms that are customizable in MATLAB. The authors give an explanation 
about the conditions of setting options for the genetic algorithm of Matlab. In order 
to obtain the best results, as a rule, calculations are usually made with different 
options. The choice of the best type of option values is based on trial and error. In 
this section, there are certain methods for selecting options in order to improve the 
results obtained in accordance with the specificity of the transportation problem. 

As it is well known, genetic algorithms are a method for solving optimization 
problems based on the biological principles of natural selection and evolution. Each 
genetic algorithm repeats a certain number of times the procedure for modifying a 
population (a set of individual solutions), seeking to obtain new sets of solutions 
(new populations). At the same time, at each step, the “parents” are selected from 
the population. The joint modification of these decisions (crossing) leads to the 
formation of a new individual in the next generation. The genetic algorithm uses 
three types of rules, on the basis of which one forms a new generation: the rules for 
selection, crossing, and mutation. The mutation allows, by making changes to the 
new generation, to avoid falling into the local minima of the optimized function. 

The mechanism of working with genetic algorithms in the MATLAB 
environment is implemented in two ways: 

1. Calling the function of genetic algorithms 
2. Using the Genetic Algorithm Tool 
Both methods are supplied as a standard set of MATLAB functions and 

modules. According to the opinion of the authors, the second option with genetic 
algorithms in MATLAB connected with the use of the Genetic Algorithm Tool is 
much more convenient and vivid. We will consider it in more details. 

To run the Genetic Algorithm Tool on the MATLAB command line, run the 
command “optimtool”. After that, a package of genetic algorithms begins working 
and the main window of the utility will appear on the screen (Fig. 1). 

The Solver allows selecting the built-in MATLAB function, which implements 
one of the optimization methods. 

The Fitness function field specifies an optimizable function in the form 
@fitnessfun where fitnessfun.m is the name of the M-file, in which the function to 
be optimized must be described first. 

The Number of variables field specifies the length of the input vector of the 
optimized function. 

In the Constraints panel, we can specify constraints or a limiting non-linear 
function. In the Linear inequalities field, a linear constraint is defined by an 
inequality of the form: A * x ≤ b. In the Linear equalities field of this panel, linear 
constraints are defined by the equality: A * x = b. In both cases, A is some matrix, 
b is a vector. 
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Fig. 1. Optimization Tool utility window 
 
In the Bounds field, the lower and upper bounds of variables are specified, and 

in the Nonlinear constraint function field can be specified an arbitrary nonlinear 
constraint function. 

If a specific problem does not require constraints, all fields in the Constraints 
panel should be left blank. 

The Run Solver panel contains control elements (Start, Pause, and Stop buttons 
to start, temporarily and completely stop the work of the genetic algorithm). It also 
contains the Status and results fields, which display the current results of the 
running genetic algorithm, and Final point, which displays the value of the end 
point of the algorithm, the best value of the function being optimized (the desired 
value). 

On the right side of the main window of the Optimization Tool utility is the 
Options (Fig. 1). It allows setting various settings for the operation of genetic 
algorithms. The main configurable parameters in Optimization Tool are: 

− population (Population tab); 
− selection operator (Selection tab); 
− reproduction operator (Reproduction tab); 
− mutation operator (Mutation tab); 
− operator crossing (Crossover tab); 
− transfer of individuals between populations (Migration tab); 
− special parameters of the algorithm (Multiobjective problem settings tab); 
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− hybrid function specification (Hybrid function tab); 
− setting the criterion for stopping the algorithm (Stopping criteria tab); 
− output of various additional information on the course of the genetic algorithm 

(Plot Functions tab); 
− output of the results of the algorithm in the form of a new function (Output 

function tab); 
− adjust a set of information for output to the command window (Display to 

command window tab); 
− a method of calculating the values of optimized and bounding functions (User 

function evaluation tab). 
Let’s take a closer look at all the above tabs and the elements that they contain. 
In the Population tab, the user can select the type of mathematical objects, to 

which the individuals of all populations will belong (double vector, bit string or 
custom type). It should be taken into account that the use of bit string and user 
types imposes restrictions on the list of permissible operators for creating, 
mutating, and crossing individuals. Also, the population tab allows adjusting the 
size of the population (how many individuals will consist of each generation) and 
how the initial generation will be created (Uniform − if there are no restrictions 
imposed, otherwise − Feasible population). In addition, it is possible to set the 
initial generation (using the Initial population item) or a part of it manually, the 
initial rating of individuals (Initial scores item), and enter the restrictive numerical 
range, to which the initial population should belong. 

The Selection tab allows selecting the parental selection operator based on the 
data from the scaling function. 

The Reproduction tab specifies how the creation of new individuals takes place. 
Elite count allows specifying the number of individuals that are guaranteed to 
move into the next generation. The Crossover fraction indicates the proportion of 
individuals that are created by crossing. The rest is created by mutation. 

In the Mutation tab, the mutation operator type is selected. 
The Crossover tab allows selecting the type of cross operator (single point, two 

point, intermediate, heuristic, arithmetic or scattered, which generates a random 
binary parent match vector). There is also the option of specifying a custom cross 
function. 

In the Migration tab, rules can be configured according to which individuals will 
move between subpopulations within the same population. Subpopulations are 
created when a vector is specified as the size of the population and not as a natural 
value. In this tab we can specify the direction of migration (forward − to the next 
subpopulation, both − to the previous and next), the proportion of migrating 
individuals and the frequency of migration (how many generations pass between 
migrations). If the creation of subpopulations is not required, this tab should 
always be left unchanged. 

The Multiobjective problem settings tab allows customizing distance measure 
function and Pareto front population function. A Pareto front is a set of points in 
parameter space (the space of decision variables) that have non-inferior fitness 
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function values. In other words, for each point on the Pareto front, we can improve 
one fitness function only by degrading another. 

The Hybrid function tab allows specifying one more minimization function that 
will be used after the algorithm finishes. 

In the Stopping criteria tab, you specify the situations in which the algorithm 
makes a stop. 

The Plot Functions tab allows selecting various information that is displayed in 
the course of the algorithm’s operation and shows both the rightness of its 
operation and the specific results achieved by the algorithm. 

The Output function tab allows displaying the history of the algorithm in a 
separate window with the specified interval of generations (the History to new 
window flag and the Interval field, respectively) and also allows specifying and 
outputting any arbitrary output function specified in the Custom field function. 

The User function evaluation tab describes, in which order the values of the 
optimized and bounding functions are calculated (separately, in parallel in one call 
or simultaneously). 

Finally, the Display to command window tab allows configuring the information 
that is displayed in the main MATLAB command window while the algorithm is 
running. 

During the writing stage of this section, the authors used their personal 
experience and Help of the MATLAB environment. In the next section, the authors 
demonstrate the aforementioned mechanism through a specific example of a 
transportation problem with fictitious costs. 

 
Part 3. The solution of the transportation problem with fictitious costs 

Substantive statement of the transportation problem with fictitious costs. In 
general, this problem is formulated as follows. Let  denote transportation roads, 

so it is necessary to perform  deliveries. Let  denote vehicles in 

quantity . In this case, the required time for transporting goods by  

vehicle on  way is , and transportation costs are . In addition, it is necessary 

to take into account previous transportation works, which consume time  and 

money . It is necessary to optimally distribute existing vehicles  

along roads . 

Mathematical formulation of the transportation problem with fictitious costs. Let 

 denote the number of flights that  vehicle must perform on  way. Then the 

mathematical model of the transportation problem with fictitious costs has the form: 

,       (14) 
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 (15) 

 

(16) 

 

(17) 

 

(18) 

In this case, the functions included in the formulas (1) and (2) are described by 
the following dependencies: 

; 

. 

(19) 

 

 

(20) 

Thus, the quantities  (the number of flights) that satisfy the transportation 

constraints (15) − (18) and minimize the function (14) are being sought. 
Dependencies (19) and (20) are interpreted as costs (transportation and time) for 
transporting goods by  vehicle on  way. 

An example of a solution to a situational economic transportation problem with 
fictitious costs. A company has three production lines: soda water production, juice 
production, and beverage production. On the way to these productions, it is 
necessary to perform  flights, using three types of vehicles. The useful 

time of vehicles of each type is . Time and transportation costs for 

the transport vehicle are described by the following matrices: 

. The time  which spends on previous 

transportation works and the transportation costs  for carrying out these works 

are given according to the matrices: . It is 

necessary to optimally distribute existing vehicles  by roads . 

The mathematical model of this problem, taking into account the notation 
adopted for the general model (14) − (20), will have the form: 
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where 

 

(22) 

    

    

    

    

 

(23) 

    

    

    

    

 

(24) 

Digital model and solution of the transportation problem with fictitious costs in 
MATLAB software environment. This example has a fitness function f(x), where x 
is matrix 3 by 3. Let us create an M-file for this function before proceeding 
(Fig. 2). 
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Fig. 2. M-file with fitness-function Fig. 3. Performing the Optimization 

with Optimization Tool 
 
Table 1 enumerates unique programs that implement the three main stages of the 

genetic algorithm: population, mutation, and crossing. 
 

Table 1 

The code user-defined functions 
The name of 

parameter in the 
Matlab environment 

Software implementation of the current parameter by the authors 

Population  

function Population = 

schedule_create(GenomeLength, FitnessFcn, options) 

totalpopulation = sum(options.PopulationSize); 

range = options.PopInitRange; 

lower = range(1,:); 

span = range(2,:) - lower; 

Population = repmat(lower,totalpopulation,1) + 

round(repmat(span,totalpopulation,1) .* 

rand(totalpopulation,GenomeLength));end 

Mutation 

function mutationChildren = 

schedule_mutate(parents, options, GenomeLength, 

FitnessFcn, state, thisScore, thisPopulation) 

lb = repmat(options.LinearConstr.lb', 

length(parents), 1); 

ub = repmat(options.LinearConstr.ub', 

length(parents), 1); 

RandChange = round(2.5*randn(length(parents), 

GenomeLength) - 0.05); 

mutationChildren = min(max(lb, 

thisPopulation(parents,:) + RandChange), ub);end 
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Ending of Table 1 

Crossover  

function xoverKids = schedule_xover(parents, 

options, nvars, FitnessFcn, unused, 

thisPopulation) 

p1 = thisPopulation(parents(1:2:end),:); 

p2 = thisPopulation(parents(2:2:end),:); 

decide = rand(size(p1))<0.6; 

xoverKids = decide .* min(p1,p2) + ~decide .* 

max(p1,p2);end 

 
To define the optimization problem, let us start the Optimization Tool and set it 

as Figure 3. Then, according to Fig. 3, set the options for the problem. Run the 
optimization by clicking Start under Run solver and view results. A plot appears in 
a window as in Figure 4. These plots show the tradeoff between the two 
components of f. It is plotted in objective function space and the average distance 
between them. The results of the optimization appear below. 

 

 

Fig. 4. The average distance between individuals and Pareto front 
 
The optimal solution of the problem is the matrix of values of variables 

, which provides the minimum value of the objective function 

. 
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Conclusions 
In this chapter, the situational transportation problem with fictitious costs is 

successfully solved. As a result of the problem, all the main aspects of 
mathematical and computer modelling of problems with a discontinuous objective 
function are presented. The authors specifically chose a small-dimensional 
problem to simplify the presentation of the main material and for greater clarity. In 
the subsequent study, the authors set the task of testing programs from Table 1 for 
large-dimensional problems. 

Transport problems with a discontinuous objective function are complex tasks in 
terms of computer programming. The analysis of published sources shows that 
genetic algorithms are successfully used in solving problems with discontinuous 
objective function. Based on the analysis of the literature, the authors also 
identified three main stages of the genetic algorithm: crossing, selection, and 
formation of a new generation (population). For all the main stages, the authors 
develop their unique m-functions (see Table 1) and write them into an article with 
open program code, which can give the chapter an enormous practical value. 

The authors chose the MATLAB software environment to write the program 
code. MATLAB is a powerful mathematical package that makes it possible to 
simplify the process of task preparation, its solution, and analysis of results as 
much as possible. 
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DEFINITION OF THE ROLE OF BUSINESS MODELLING  

IN THE BUILDING OF A MANAGEMENT INFORMATION SYSTEM 
 
Summary 
The complex method of introduction of management information systems is 

proposed on the basis of creation of a complete business model of the company, 
which is excellent in that it allows for efficient designing of management 
information systems in accordance with its concept, provides further automation of 
management information systems based on the organizational and methodological 
approach of project management, and allows increasing the effectiveness of the 
process of implementing the management systems of the new technology. 


