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Introduction 

 

The objective of this methodical edition is to test the statistical software R 

for possible educational use at S. Kuznets Kharkiv National University of 

Economics for solving statistical textbook problems. This work introduces 

some basic features of R for statistics with some real examples. They will help 

students of economics having basic knowledge of mathematics start using R 

in probability and statistics courses. It can be also used as a tutorial for 

engineering students when studying statistics courses with computer program 

in R.  

R is a popular language and environment that allows powerful and fast 

manipulation of data, offering many statistical and graphical options. Graphical 

representation of data is pivotal when one wants to present scientific results, 

in particular in publications. R allows you to build top quality graphs (much 

better than Excel for example). 

These guidelines, however, focus on the statistical possibilities of R. 

Whatever package you use, you need some basic statistical knowledge if only 

you want to design your experiments correctly. 

This work is mainly divided into three parts. Part 1 will tell you where to 

get the software and how to install it on your PC. The purpose of Part 2 is to 

give some familiarity with the R sessions and R language essentials. Part 3 is 

devoted to the probability distributions with R. In the rest part of this work, 

some statistical textbook problems are solved with the R statistical software. 

With the help of these examples, you will further familiarize yourself with the 

application of R to solving the real statistics problems. 

These guidelines were written to follow the version 3.2.5(2016-04-14) 

that is one of the latest versions of R.  
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1. Obtaining and installing R 

 

One way to download R is from the main website for R: http://cran.r-

project.org/. There are lots of mirror sites worldwide. You can choose a closer 

site to get the faster download time. There are three pre-complied versions for 

Linux, Mac Os and Windows and you can select a proper version for variants 

of platforms. The most convenient way to use R is at a graphics workstation 

running a windowing system.  

The binaries distribution installation is usually quite straightforward and 

is similar to other software. The binaries distribution can be obtained in two 

versions: 

1. A 23Mb file rw2001.exe. Just run this for a Windows-XP style installer. 

It contains all the R components, and you can select what you want to install. 

2. Files miniR.exe and miniR-1.bin to miniR-7.bin. This is a small instal-

lation, containing text help and the introduction to R and Data Import/Export 

manuals in PDF.   

For more details, including command-line options for the installers and 

how to uninstall, see the rw-FAQ from CRAN.   

For Microsoft Windows platform, select the set up file rw2001.exe and 

double-click with the mouse and then follow the on-screen instructions. When 

the process is complete, you will have an entry under Programs on the start 

menu for invoking R, as well as a desktop icon. 

The README.rw2001 offers the detailed instructions on installation for 

your machine. 

 

2. R language essentials (quick introduction to R) 

 

2.1. Starting the R session and session management 
 

Starting R is straightforward, but the method will depend on your computing 

platform. You can launch R from a system menu by a double-click on the icon, 

or by input of the command "R" in the system command line. Once R is started, 

you will see the information as: R : Copyright 2004, The R Foundation for 

Statistical Computing, Version 2.0.1 (2004-11-15), ISBN 3-900051-07-0. 

R is free software and comes with absolutely no warranty. You are welcome 

to redistribute it under certain conditions. Type license() for distribution details. 

http://cran.r-project.org/
http://cran.r-project.org/
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R is a collaborative project with many contributors. Type contributors() for 

more information and citation() on how to cite R or R packages in publications. 

Type demo() for some demos, help() for on-line help, or help.start() for 

a HTML browser interface to help. 

Type q() to quit R.  

The R program prints a prompt ">" when it is ready for input. R works 

fundamentally by the question-and-answer model: you can enter the command 

then press the enter button, the program will do something, then print the 

result if relevant. If a command is not complete at the end of a line, R will give 

a different prompt with "+" to expect to read the input until the command is 

syntactically complete. 

R is an expression language with a very simple syntax. It is case sensitive, 

so the letter "A" and "a" is different symbols and refers to different variables. 

Normally all alphanumeric symbols are allowed.  

Comments can be put almost anywhere, following with a hash mark "#". 

Any comment character after the "#" is ignored by R. Normally parentheses "()" 

are for functions, and square brackets "[]" are for vector arrays and lists. 

All variables created in R, are stored in a common workspace. The function 

ls (list) is used to display the contents of the workspace. You can also use the 

function rm (remove) to delete some of the objects from your workspace. To clear 

the entire workspace you can use the command: 

 

> rm(list = ls()). 

 

When you exit, you will be asked whether to save the workspace image. 

It is also possible to save the workspace to a file with any name using the 

command: 

 

> save.image(). 

 

It will be saved to a file with .Rdata extension in your working directory. 

The files with .Rdata extension will be loaded by default when R is started in 

its directory. Other saved files can be loaded into your workspace using the 

function load(). 
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2.2. Getting help with functions and features 

 

R has an inbuilt help facility. From the command line, you can always use 

the following commands to get the information on any specific named function. 

To get help on the solve() function: 

 

> help(solve) 

or 

> ?solve. 

 

Another command we usually use to get help is apropos(). This command 

is convenient when you think you know the function's name but you are not 

sure. We can use this command to get a list of function names that contain 

a given pattern. 

 

> apropos("solve") 

[1] "backsolve"     "forwardsolve"  "qr.solve"      "solve"         

[5] "solve.default" "solve.qr".   

 

On most R installations the help is available in HTML format by running 

 

> help.start() 

 

which will launch a Web browser that allows the help pages to be browsed with 

hyperlinks. The "Search Engine and Keywords" link in the page loaded by 

help.start() is particularly useful as it contains a high-level concept list which 

searches though available functions. It can be a great way to get your bearings 

quickly and to understand the breadth of what R has to offer. 

 

2.3. Entering data into R 

 

An R installation contains a library of packages. Some of these packages 

are part of the basic installation, others can be downloaded from the website: 

http://cran.r-project.org/. To load the package into R we should use the command 

library(). The loaded packages will be dropped if you terminate your R session. 

So you have to load it again when you start a new session with the saved 

workspace. 

http://cran.r-project.org/
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R has a number of built-in data sets. Sometimes we need to read in a built-

in dataset. But at the first we need to load the package, and then ask to load 

the data. Here are the commands used for reading in a built-in dataset: 

 use the command library() to list all available packages;  

 use the command data() without any arguments to list all available 

datasets; 

 use data(package = "package name") to list all data sets in a given 

package; 

 use data("dataset name") to read in a dataset. 

It is very convenient to use built-in data sets, sometimes we want to enter 

data into the session from outside of R. There are several ways to read data 

from outside. 

 

2.3.1. Using c() 

 

The most useful R command for quickly entering in small data sets is the 

c-function. It is short for "concatenate". This function combines, or concatenates 

terms together, for example, stores the values 1, 2, 3, 4 into x. 
 

 > x = c(1,2,3,4) 

 > x 

 [1] 1 2 3 4. 
 

The values are assigned to the variable x by the assignment operator 

"=". The value of x doesn't automatically print out. We can input the variable 

name to indicate the values. The values are prefaced with "[1]". This indicates 

that the value is a vector. 

 

2.3.2. Using scan 

 

The function scan() can do the same thing as c(): 
 

 > x = scan() 

 1 2 3 

 4. 
 

Notice, when we start typing the numbers in, if we hit the return key 

once, we continue on a new row, if we hit it twice, scan() stops. 
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2.3.3. Using scan() with a file 

 

If we have our numbers stored in a text file, then the function scan() can 

be used to read them in. We need to pass the file name to the function scan():  
 

> x = scan(file = "ReadWithScan.txt") 
 

This command will read the contents of the file ReadWithScan.txt into 

the R session.  

 

2.3.4. Editing the data frame 

 

The data.entry() command is used to edit the existing variables and data 

frames with a spreadsheet-like interface. A simple usage is: 
 

 > data.entry(x) # x already defined; 

 > data.entry(x = c(NA)) # if x not defined yet. 
 

When the window is closed, the values are saved. The R command edit 

will also open a simple window to edit data. This makes the edit functions easier, 

but the results of the edit will not be stored when you close the window.  

 

2.3.5. Reading data in tables 

 

If you want to enter multivariate sets of data, you can do any of the above 

for each variable. However, it may be more convenient to read in tables of 

data at once. The command read.table() will read the data in and store the results 

in a data frame. A data frame is a special matrix where all the variables are 

stored as columns and each has the same length. (Notice we need to specify 

that the headers be there in this case.) 
 

> y = read.table("person.txt",header = TRUE) 

 > y 

 Age Weight Height Gender 

 1 18 150 65 F 

 2 21 160 68 M 

 3 45 180 65 M 

 4 54 205 69 M 
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2.4. Functions and arguments 

 

In the R environment many things are done through the function calls. 

R function calls are the commands that contain one or several variables, for 

example: 
 

> plot (height, weight) 
 

The function name is plot and the arguments are height and weight. These 

are the actual arguments that only apply to the current call. The functions 

have a large selection of arguments in order to be able to modify symbols, for 

example, the plot function has line width, titles, axis type, and so on.  

There are two kinds of argument specification used in R functions: 

positional matching and keyword matching, that is the arguments can be 

specified in arbitrary order with the specified keyword of the function (generally, 

the functions have a large selection of arguments). For example, we can write: 
 

> plot (y = weight, x = height, pch = 2) 
 

This is the same plot as  
 

> plot ( x = height, y = weight, pch = 2) 
 

The keyword pch was used to say that the argument is a specification 

of the plotting character. 

 

2.5. Missing values 

 

In real data analysis, a data point is frequently unavailable. R allows vectors 

to contain a special NA value. This value is carried through in computations 

so that operations on NA yield NA as the result. 

 

2.6. Functions that create vectors 

 

There are several functions used to create vectors in R: c, seq, rep, and gl. 

The c() has already been introduced. The second function, seq (sequence), 

is used for equidistant series of numbers. It is always needed for graphics 

and ANOVA. Like, 
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 > seq (4, 10, 2) 

 [1] 4 6 8 10, 

 

which prints integers from 4 to 10 with increment of 2. 

The function rep(), replicate, is used to generate repeated values. It is used 

in two variants, depending on whether the second argument is a vector or 

a single number. For example: 

 

 > rep ( c(4,5,6),3) 

 [1] 4 5 6 4 5 6 4 5 6, 

 

 > rep ( c(4,5,6),1:3) 

 [1] 4 5 5 6 6 6. 

 

The first of the above function calls repeats the vector (4, 5, 6) three 

times. The second one repeats each value of the vector (4, 5, 6) with relevant 

times, which is indicated by the second argument 1:3 (means 1, 2, 3). 

The function gl(generate factor levels) is used to generate factors by 

specifying the pattern of their levels. For example: 

 

> gl(3,3,9,labels = c("15°F", "70°F", "125°F")) 

[1] 15°F  15°F  15°F  70°F  70°F  70°F  125°F  125°F  125°F 

Levels: 15°F  70°F  125°F. 

 

This command generates factors for a temperature variable. The result 

gives three factor levels (first argument "3"), three times of replications (second 

argument "3"), total length of the factors (third argument "9"), and the labels 

of the factor levels (the last one is optional). 

 

2.7. Matrices and arrays 

 

An array can be considered as a multiply subscribed collection of data 

entries. A dimension vector is a vector of non-negative integers. A matrix is just 

а two-dimensional array of numbers. The dimensions are indexed from one up 

to the values given in the dimension vector. A vector can be used as an array 

if it has a dimension vector as its dim attribute. For example, 
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 > x = 1:12 

 > dim(x) = c(3,4) 

 > x 

  [,1] [,2] [,3] [,4] 

 [1,]    1    4    7   10 

 [2,]    2    5    8   11 

 [3,]    3    6    9   12 
 

This assignment gives the vector (1:12) the dim attribute that asks it to be 

treated as a 3-row by 4-column matrix. 

There is a convenient way to create matrices in R using the function 

matrix(). 
 

 > matrix(1:12, nrow = 3, byrow = T) 

 [,1] [,2] [,3] [,4] 

 [1,]    1    2    3    4 

 [2,]    5    6    7    8 

 [3,]    9   10   11   12. 
 

The argument nrows indicates the number of rows of the vector, the 

argument byrow causes the matrix to be filled in a rowwise or columnwise 

fashion. 

 

2.8. Data frames 

 

A data frame is a list of variables of the same length with unique row 

names, given class data.frame. A data frame can be displayed in matrix form, 

and its rows and columns extracted using matrix indexing conventions. 

The function data.frame() converts each of its arguments to a data frame. 

Objects passed to data.frame should have the same number of rows. 
 

 > d = data.frame(Temperature, Pressure) 

 > d 

  Temperature Pressure 

 1 100 25 

 2 125 25 

 3 150 25 

 4  100 30 
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 5  125 30 

 6 150 30 

 7 100 35 

 8 125 35 

 9 150 35 

 10 100 40 

 11 125 40 

 12 150 40 

 13 100 45 

 14 125 45 

 15 150 45 

 

The above function creates a data frame list of 2 components using Temperature 

and Pressure variables. 

The simplest way to construct a data frame is to use the read.table() 

function to read an entire data frame from an external file. This has been 

discussed in Section 2.3. 

 

2.9. Graphics 

 

One of the most important aspects of presentation and analysis of data 

is the generation of proper graphics. R has a simple model for constructing 

plots. The command is  

 

> plot (x, y,…). 

 

A single argument x can be provided to the plot function alternatively. 

But when argument y is missing, x-coordinate should be defined as a 

reasonable way to the plot() function. 

You might want to modify the drawing in various ways. There are a lot of 

plotting parameters that you can set. Basically, a standard x-y plot has x and y 

title labels generated from the expressions being plotted. You may, however, 

override these labels and also add two further titles, a main title above the plot 

and a subtitle at the very bottom, in the plot call. You can also change the 

plotting symbol, plotting color, plotting type, and plotting range by passing 

corresponding parameters to the plot function. Let us see a plotting example. 
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Define the x coordinate: 
 

> x = 1:10 
 

Define the y coordinate: 
 

> y = function(x) (1/10)*exp(-x/10). 
 

Call the plot function to construct a scatter plot (Fig. 2.1): 

 
Fig. 2.1. A scatter plot with pch = 2 and col = "blue". 

 

There are a lot of arguments that can be set to the plot(). See the 

following commands: 
 

> plot(x,y(x), pch = 2, col = "blue", xlim = c(1,12), ylim = c(0,0.1), main = "plot 

x-y", xlab = "X-coordinate", ylab = "Y-coordinate") 

> plot(x,y(x), pch = 2, col = "blue", xlim = c(1,12), ylim = c(0.03,0.1), main = 

"plot x-y", xlab = "X-coordinate", ylab = "Y-coordinate"). 
 

The x and y arguments provide the x- and y-coordinates for the plot. 

The pch(plotting character) sets the symbols for the plot. The col (color) sets 

the colors for lines or points. The xlim (x limits) and ylim (y limits) set the x 
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and y limits of the plot. The main (main title), xlab (x label), and ylab (y label) 

set the main title, the label of x-coordinate and y-coordinate.  

The function lines() is used for adding connected line segments to a plot. 

See the command 
 

> lines(x,y(x)-0.01, lty = 2, col = "green"), 
 

which add a dashed line to the existing plot diagram. The argument lty 

(line type) and lwd (line width) set the type and width of the plotting lines.  

The function abline() can be used to add one or more straight lines to a plot. 

The argument h and v forms draw horizontal and vertical lines at the specified 

coordinates. 
 

> abline(v = 4, h = 0.05).  
 

This command is for adding the horizontal and vertical lines as shown in 

Fig. 2. 2. The function points() is used to add points to a plot. 

 
Fig. 2.2. Adding the reference curve and straight lines,  

using lines() and abline() 
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It is difficult to describe the graphic parameters completely at this point. 

You can see the further graphical parameters in the par() (parameters). This 

function is used to set or query graphical parameters. We will return to them 

as they are used for specific plots. 

 

3. Probability distributions 

 

3.1. The built-in distributions in R 

 

The concepts of randomness and probability are central to statistics. 

R provides a comprehensive set of statistical distributions:  

 

 Distribution R name additional arguments 

 

 beta  beta  shape1, shape2, ncp 

 binomial  binom  size, prob 

 Cauchy  cauchy  location, scale 

 chi-squared  chisq  df, ncp 

 exponential  exp  rate 

 F  f  df1, df1, ncp 

 gamma  gamma  shape, scale 

 geometric  geom  prob 

 hypergeometric  hyper  m, n, k 

 log-normal  lnorm  meanlog, sdlog 

 logistic  logis  location, scale 

 negative binomial  nbinom  size, prob 

 normal  norm  mean, sd 

 Poisson  pois  lambda 

 Student's t  t  df, ncp 

 uniform  unif  min, max 

 Weibull  weibull  shape, scale 

 Wilcoxon  wilcox  m, n. 

 

Four fundamental items can be calculated for a statistical distribution: 

 density or point probability; 

 cumulated probability, distribution function; 
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 quantile; 

 pseudo-random numbers. 

For all distributions implemented in R, there is a function for each of the 

four items listed above. The prefix name is given by d for the density, p for the 

cumulated probability distribution function (CDF), q for the quantile function, 

and r for pseudo-random numbers. For example, for the normal distribution, 

these functions are named dnorm, pnorm, qnorm, and rnorm, respectively. 

Here is an example of binomial distribution. 

Example 3.1.1. Albino rats used to study the hormonal regulation of a meta-

bolic pathway are injected with a drug that inhibits body synthesis of protein. 

The probability that a rat will die from the drug before the experiment is over is .2. 

a) What is the probability that at least eight will survive? 
 

> pbinom(2,10.2) 

[1] 0.6777995. 
 

There are three arguments to the pbinom() function. The first argument is 

the yield value that indicates at least 2 rats will die. The following one specifies 

the number of trials. The last argument is the probability that a rat will die from 

the drug. 

b) Would you be surprised if at least five died during the course of the 

experiment? 
 

> 1-pbinom(4,10.2) 

[1] 0.0327935. 
 

Consider an example for calculating the binomial probability. 

Example 3.1.2. Geophysicists determine the age of a zircon by counting 

the number of uranium fission tracks on a polished surface. A particular zircon 

is of such an age that the average number of tracks per square centimeter is five. 

What is the probability that a 2-centimeter-square sample of this zircon will 

reveal at most three tracks, thus leading to underestimations of the age of the 

material? 
 

> ppois(3,10) 

[1] 0.01033605. 
 

There are two arguments to the ppois() function here. The first one is 

the yield value and the last arguments specify the number of trials. 

Consider now an example for calculating the normal probability. 
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Example 3.1.3. Most galaxies take the form of a flattened disc with the 

major part of the light coming from this very thin fundamental plane. The degree 

of flattening differs from galaxy to galaxy. In the Milky Way Galaxy most gases 

are concentrated near the center of the fundamental plane. Let X denote the 

perpendicular distance from this center to a gaseous mass. This X is normally 

distributed with mean 0 and standard deviation 100 parsecs. 

a) Sketch a graph of the density for X. Find the probability that a gaseous 

mass is located within 200 parsecs (Fig. 3.1). 
 

> plot(function(x) dnorm(x,0,100), -300, 300) 

 
Fig. 3.1. The plot of the density of the normal distribution 

 

 > pnorm(200,0,100)-pnorm(-200,0,100) 

 [1] 0.9544997. 
 

Here we use three arguments in the pnorm() function. These arguments 

specify the yield value (200), the mean (0), and the standard deviation (100).  

The function plot() is used to sketch a graph of the density for X in the 

area within -300 and 300. There are many parameter arguments that can be 

used for the plot call.  

The function of density for X is created further. The R language allows 

creating your own function. A function is defined by an assignment of the form: 
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The expression is an R expression, (usually a grouped expression), that 

uses the arguments arg_i to calculate a value. The value of the expression is 

the value returned for the function. A call to the function then usually takes 

the form username(expr_1, expr_2...) and may occur anywhere a function call 

is legitimate. For example: 
 

 myfunction <- function(arg1, arg2, ... ){ 

 statements 

 return(object) 

 } 
 

The objects in the function are local to the function. The object returned 

can be any data type. Here is an example: 

# function example – get measures of central tendency, 

# and spread for a numeric vector x. The user has a 

# choice of measures and whether the results are printed. 
 

mysummary <- function(x,npar = TRUE, print = TRUE) { 

  if (!npar) { 

    center <- mean(x); spread <- sd(x)  

  } else { 

    center <- median(x); spread <- mad(x)  

  } 

  if (print & !npar) { 

    cat("Mean=", center, "\n", "SD=", spread, "\n") 

  } else if (print & npar) { 

    cat("Median=", center, "\n", "MAD=", spread, "\n") 

  } 

  result <- list(center=center,spread=spread) 

  return(result) 

}. 

Invoking a function: 

# invoking the function  

set.seed(1234) 

x <- rpois(500, 4)  

y <- mysummary(x) 

Median = 4 

MAD = 1.4826  
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# y$center is the median (4)  

# y$spread is the median absolute deviation (1.4826) 
 

y <- mysummary(x, npar = FALSE, print = FALSE) 

# no output  

# y$center is the mean (4.052) 

# y$spread is the standard deviation (2.01927). 
 

b) Approximately what percentages of the gaseous masses are located 

more than 250 parsecs from the center of the plane? 
 

 > 1-(pnorm(250,0,100)-pnorm(-250,0,100)) 

 [1] 0.01241933. 
 

To get the percentage of over 250 parsecs from the center of the plane, 

the percentage of within 250 should be calculated:  
 

pnorm(250,0,100)-pnorm(-250,0,100). 
 

c) What distance has the property that 20 % of the gaseous masses are 

at least this far from the fundamental plane? 
 

 > qnorm(.1,0,100) 

 [1] -128.1552 

 > qnorm(.9,0,100) 

 [1] 128.1552. 

 

3.2. Descriptive statistics and graphics 

 
3.2.1. Summary statistics for a single group 

 

R comes with many built-in functions that can apply to the data. The char-

acteristics most used to measure the center and spread of data are the mean 

and standard deviation. Here are some R commands needed when measuring 

a data distribution: 
 

 > mean(x)  #find the average for  data x.  

 > var(x)  #find the variance for data x. 

 > median(x) #find the median for data x. 

 > sd(x)  #find the standard deviation for data x. 
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There are a large number of ways to examine the distribution of the data 

set. The simplest way is to examine the numbers. There is a function frequently 

used for summaries of data: summary(). Here is an example: 
 

 > x = rnorm(50)  

 > summary(x)  

Min   1st Qu    Median   Mean    3rd Qu   Max 

-1.58300  -0.69710  0.10180  0.04832  0.63240  2.29200. 
 

In this example the function rnorm() generates an artificial data vector x of 

50 normally distributed observations. The summary() function displays a numeric 

variable, in which 1st Qu and 3rd Qu refer to the empirical quartiles (0.25 and 

0.75 quantiles). 

 

3.2.2. The graphical display of distributions 

 

The stem-and-leaf diagram is very useful for seeing the shape of the 

distribution if the data set is relatively small. The number on the left of the bar 

is the stem, the number on the right is the digit. You put them together to find 

the observation. The R command for constructing a stem-and-leaf diagram is  
 

> stem(). 
 

If there is too much data, you can try another graphical visualization of 

data. The most common one is a histogram. The histogram defines a sequence 

of breakpoints and then counts the number of observations in the bins formed 

by these break points. (This is identical to the features of the cut() function.) It 

plots these with a bar similar to the bar chart, but in a histogram the bars are 

touching. The height of the bars can be the frequencies, or the proportions. 

The command for constructing a histogram is  
 

> hist(). 
 

It can take arguments that control the specific form of the display.  

Let us consider a simple example. The observations have to be pre-

saved in the file named "6-11.txt", for example.  

Example 3.2.1. Some efforts are currently being made to make textile 

fibers out of peat fibers. This would provide a source of cheap feedstock for 

the textile and paper industries. One variable being studied is X, the percentage 
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of the ash content of a particular variety of peat moss. Assume that a random 

sample of 50 mosses yields these observations in the data file "6-11.txt": 
 

0.5  1.8  4.0  1.0  2.0 

1.1  1.6  2.3  3.5  2.2 

2.0  3.8 3.0  2.3  1.8 

3.6  2.4  0.8  3.4 1.4 

1.9  2.3  1.2  1.9  2.3 

2.6  3.1  2.5  1.7  5.0 

1.3  3.0  2.7  1.2  1.5 

3.2  2.4  2.5 1.9  3.1 

2.4  2.8  2.7  4.5  2.1 

1.5  0.7  3.7  1.8  1.7. 
 

Input the data from the data file "6-11.txt": 
 

> x = scan("6-11.txt") 
 

a) Read 50 items: 
 

> x 

[1] 0.5 1.8 4.0 1.0 2.0 1.1 1.6 2.3 3.5 2.2 2.0 3.8 3.0 2.3 1.8 3.6 2.4 0.8 3.4 

[20] 1.4 1.9 2.3 1.2 1.9 2.3 2.6 3.1 2.5 1.7 5.0 1.3 3.0 2.7 1.2 1.5 3.2 2.4 2.5 

[39] 1.9 3.1 2.4 2.8 2.7 4.5 2.1 1.5 0.7 3.7 1.8 1.7 
 

b) Construct a stem-and-leaf diagram for these data 
 

> stem(x) 
 

The decimal point is the sign "|": 
 

 0 | 578 

 1 | 012234 

 1 | 55677888999 

 2 | 00123333444 

 2 | 556778 

 3 | 001124 

 3 | 5678 

 4 | 0 

 4 | 5 

 5 | 0 
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c) Break these data into six categories. 

Find the range of data, which is the difference between the largest 

observation data max(x) and the smallest data min(x). Divide the range by the 

number of categories (6) to get the minimum length required covering this 

range:  
 

 > (max(x)-min(x))/6 

 [1] 0.75. 
 

Set the boundaries and use the cut() function to break these data into six 

categories:  
 

 > breaks = c(seq(min(x)-0.05,max(x),.8),max(x)+.05) 

 > breaks 

 [1] 0.45 1.25 2.05 2.85 3.65 4.45 5.05 

 > cats = cut(x, breaks = breaks) 
 

The function seq() is used further to generate the sequence number from 

the lower boundary "(min(x)-0.05)" to the maximum value (max(x)) by the 

increment of "minimum length(.8)". 

d) Construct a frequency table and a relative frequency histogram for 

these data (Fig. 3.2). 

 
Fig. 3.2. The relative frequency histogram for the sample  

of Example 3.2.1. 
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The command table() can use the cross-classifying factors to build a 

contingency table of the counts at each combination of factor levels: 
 

 > table(cats) 

 cats 

 (0.45,1.25] (1.25,2.05] (2.05,2.85] (2.85,3.65] (3.65,4.45] (4.45,5.05] 

7        15       15        8         3        2 
 

Use the function hist() to construct a histogram. The argument "breaks" 

gives the breakpoints between histogram cells. 
 

> hist(x, breaks = breaks, ylab = "Relative frequency", main = "Histogram of 

peat fibers") 
 

e) Construct a cumulative frequency table and a relative cumulative fre-

quency ogive for these data. 
 

> cumtable = cumsum(table(cats)) 

> cumtable 

(0.45,1.25] (1.25,2.05] (2.05,2.85] (2.85,3.65] (3.65,4.45] (4.45,5.05] 

   7        22        37         45       48       50  
 

The command cumsum() returns a vector whose elements are the 

cumulative sums. 

 

4. One- and two-sample tests 

 

Now we will focus on the actual statistical analysis applications. Some 

of the most used statistical tests deal with comparing continuous data, either 

between two samples or against the a priori stipulated values. 

 

4.1. Comparing the variance of two samples 

 

R provides the var.test() (variance comparison testing) function for testing 

two-variance comparison. This function implements an F-test on the ratio of 

the group variances. The command is: 
 

> var.test(x, ...) 



26 

R also provides a function for each of the four items similar to the 

distribution mentioned in Section 3.1 as the F-distribution: 
 

 > df(x, df1, df2, log = FALSE) 

 > pf(q, df1, df2, ncp=0, lower.tail = TRUE, log.p = FALSE) 

 > qf(p, df1, df2,        lower.tail = TRUE, log.p = FALSE) 

 > rf(n, df1, df2) 
 

Let's consider an example for comparing the variance of two samples. 

In this example, we don't know the sample data so we cannot use the simple 

function var.test() for comparing the variance of two samples. Instead, we can 

calculate the f-value first, then call the function pf() to construct the p-value of 

the testing statistics. Then compare the p-value with the confidence level . We 

can also use another function qf() to find the critical point instead of calculating 

the p-value, then compare the observed f-value with the critical points. 

Example 4.1.1. Test for equality of variances at the indicated level:  

n1 = 10, var1 = .25; n2 = 8, var2 = .05;  = .20. 
 

Input the data: 
 

 > n1 = 10 

 > var1 = .25 

 > n2 = 8 

 > var2 = .05 

 > alpha = .10 
 

Calculate the observed value f: 
 

 > f = var1/var2 

 > f 

 [1] 5. 
 

Calculate the critical points using command qf() (quantiles f distribution). 

Set the first argument to indicate the level, the following two arguments to 

indicate the degree of freedom: 
 

 > qf(alpha, n1-1, n2-1) 

 [1] 0.3991517 

 > qf(1-alpha, n1-1, n2-1) 

 [1] 2.724678. 
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The observed value 5 is larger than the upper critical 2.72. Calculate the 

p-value using the pf() (probabilities f distribution) command. The first argument 

in this function is the vector of quantiles, the second and third ones are the 

degrees of freedom, and the last one is specified to the upper tail. We choose 

the upper tail ("lower.tail = F" – FALSE) for the absolute value of f and double 

it to get the two-sided p-value.   
 

 > 2*pf(f, n1-1, n2-1, lower.tail = F) 

 [1] 0.04542107. 
 

The inference: reject H0 (the null hypothesis) because the p-value is 

smaller than  = .05. 

 

4.2. Comparing the means of two samples when  

the variances are equal 

 

The function t.test() is used for comparing the sample means:  
 

> t.test(x, y = NULL, alternative = c("two.sided", "less", "greater"), mu = 0, 

paired = FALSE, var.equal = FALSE, conf.level = 0.95, ...) 
 

There is a number of optional arguments in the t.test() function. Three 

of them are relevant in one-sample problems. mu is to specify the mean value 

 under the null hypothesis (default is mu = 0). In addition, you can specify 

one of the alternative hypotheses to "alternative" (default is "two.sided"). The 

third item that can be specified is the confidence level used for the confidence 

intervals; you would write conf.level = 0.90 to get a 90 % interval. To get the 

usual t-test for two-sample problems, it must be specified that variances are 

the same. This is done via the optional argument var.equal = T. 

R command has a function for each of four items, dt (density t distribution), 

pt (cumulated probability t distribution), qt (quantiles t distribution), and rt (random 

number generate t distribution). 
 

 > dt(x, df, ncp = 0, log = FALSE) 

 > pt(q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) 

 > qt(p, df,      lower.tail = TRUE, log.p = FALSE) 

 > rt(n, df) 
 

Consider an example of comparing the means of two samples. 
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Example 4.2.1. A study of reports written by engineers has been conducted. 

A scale that measures the intelligibility of engineers' English has been devised. 

This scale, called an "index of confusion", is devised so that low scores indicate 

high readability.  
 

 Journals  Unpublished reports 

 1.79  2.39 

 1.87  2.56 

 1.62  2.36 

 1.96  2.62 

 1.65 2.51 

 1.75  2.29 

 1.74  2.58 

 2.06  2.41 

 1.69  2.86 

 1.67  2.49 

 1.94  2.33 

 1.33  1.94 

 1.70  2.14 
 

The observations have to be stored as a table in the data file "10-13.txt" 

with the titles: the "header = TRUE" specifies that the first line is the header 

containing the names of variables contained in the file. 
 

 > x = read.table("10-13.txt", header = TRUE) 

 > x 
 

If we did everything right, we will get: 
 

 Journals Unpublished reports 

 1 1.79 2.39 

 2 1.87 2.56 

 3 1.62 2.36 

 4  1.96 2.62 

 5  1.65 2.51 

 6 1.75 2.29 

 7 1.74 2.58 

 8  2.06 2.41 

 9 1.69 2.86 
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 10 1.67 2.49 

 11 1.94 2.33 

 12 1.33 1.94 

 13 1.70 2.14. 
 

When we need to get the component of the table individually, a useful 

way is giving the component name followed by "$" to the variable that is stored 

in the table. 

Get sample 1: 
 

> a = x$Journals 

> a 

 [1] 1.79 1.87 1.62 1.96 1.65 1.75 1.74 2.06 1.69 1.67 1.94 1.33 1.70. 
 

Get sample 2: 
 

> b = x$Unpublishedreports 

> b 

 [1] 2.39 2.56 2.36 2.62 2.51 2.29 2.58 2.41 2.86 2.49 2.33 1.94 2.14. 
 

a) Test H0: 12 = 22 at the  = .2 level to be sure that pooling is 

appropriate. 
 

> var.test(a,b) 
 

We use further the F-test to compare two variances. 

Data:  a and b.  

F = 0.6477, the numerator df = 12, the denominator df = 12, the p-value = 

= 0.463. 

The alternative hypothesis: the true ratio of the variances is not equal to 1.  

The 95 percent confidence interval:  
 

[1] (0.1976  2.1227). 
 

Sample estimates: the ratio of the variances is equal to 
 

[1] 0.6477. 
 

The inference: since the p-value 0.463 is larger than  = .2, pooling is 

appropriate.   
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b) Find sp2. 

There is no function to get the sp value. We have to give the expression 

for calculating the value sp: 
 

 > sp2 = (12*var(a)+12*var(b))/24 

 > sp2 

 [1] 0.0432641 
 

c) Find a 90 % confidence interval on 1 - 2, using the t.test() function: 
 

> t.test(a,b,var.equal = T, conf.level = .9) 

 

A two-sample t-test 

 

Data:  a and b.  
 

t = -8.2124, df = 24, p-value = 1.979e-08. 
 

The alternative hypothesis: the true difference in the means is not equal to 0.  

The 90-percent confidence interval: 
 

(-0.8095813 -0.5304187). 
 

Sample estimates: the mean of x; the mean of y: 
 

1.7515;  2.4215. 
 

d) Does it appear to be a difference between 1 and 2? One can use 

for this the t.test() function. 

Data:  a.  
 

t = 34.2422, df = 12, the p-value = 2.449e-13. 
 

The alternative hypothesis: the true mean is not equal to 0.  

The 90-percent confidence interval: 
 

(1.660372; 1.842705). 
 

Sample estimates: the mean of x: 
 

1.751538 
 

> t.test(b, conf.level = .9) 
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A one-sample t-test 

 

Data:  b.  
 

t = 38.1, df = 12, the p-value = 6.877e-14. 
 

The alternative hypothesis: the true mean is not equal to 0. 

The 90-percent confidence interval: 
 

2.308261 2.534816 
 

Sample estimates: the mean of x: 
 

2.421538. 
 

In the next example, the data of two samples are not given. We only know 

the means and the variances of the samples. So we cannot simply use the 

t.test() and the var.test() function for testing the statistics. 

Example 4.2.2. Environmental testing is an attempt to test a component 

under conditions that closely simulate the environment in which the component 

will be used. An electrical component is to be used in two different locations 

in Alaska. Before environmental testing can be conducted, it is necessary to 

determine the soil composition in the localities. These data are obtained on 

the percentage of SiO2 by weight of the soil:  
 

Anchorage:  n1 = 10, 1 = 64.94, var1 = 9. 

Kodiak: n2 = 16, 2 = 57.06, var2 = 7.29. 
 

Input the data: 

 > n1= 10 

 > mu1 = 64.94 

 > var1 = 9 

 > n2 = 16 

 > mu2 = 57.06 

 > var2 = 7.29 
 

a) Test H0: var1 = var2 at the  = .2 level. 

Calculate the observed value: 
 

 > f = var1 / var2 

 > f 

 [1] 1.234568. 
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Calculate the critical points, use the function qt (quantiles f-distribution). 

The first argument is the vector of probabilities; the second and third ones are 

the degrees of freedom of observations. 
 

 > qf(.9,n1-1,n2-1) 

 [1] 2.086209 

 > qf(.1,n1-1,n2-1) 

 [1] 0.4274191. 
 

The observed value lies within the critical points. 

Calculate the p-value, use the function pf (probabilities f-distribution). 

The first argument is the vector of quantiles, the following two arguments are 

the degrees of freedom of observations, and the last one is to indicate that we 

want to see the upper tail of the distribution. We double it to get the two-sided 

p-value. 
 

 > 2*pf(f, n1-1, n2-1, lower.tail = F) 

 [1] 0.6899627. 
 

The inference: we cannot reject H0 since the p-value is larger than  = 0.2. 

b) Find sdpool2. 
 

 > sdpool = sqrt(((n1 - 1) * var1 + (n2 - 1) * var2)/(n1 + n2 -2)) 

 > sdpool 

 [1] 2.816248 

 > sdpool^2 

 [1] 7.93125 
 

c) Find a 99 % confidence interval on 1- 2. 

The lower point: 
 

 > mu1-mu2+qt(0.995,n1+n2-2)*sqrt(sdpool^2*(1/n1+1/n2)) 

 [1] 11.05527 

 The upper point: 

 > mu1-mu2+qt(0.005,n1+n2-2)*sqrt(sdpool^2*(1/n1+1/n2)) 

 [1] 4.704731. 
 

The inference: a 99 % confidence interval on 1- 2 is (4.7047; 11.0553). 
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4.3. Comparing the means of two samples when  

the variances are unequal 

 

The function t.test() also performs the two-sample t-test when we assume 

the variances unequal. This is done without specifying the optional argument 

var.equal in which the default value is False. Let's consider an example. 

Example 4.3.1. A study is conducted to compare the tensile strength of 

two types of roof coatings. It is thought that, on the average, butyl coatings 

are stronger than acrylic coatings. The following data have been gathered: 
 

Tensile strength, lb/in2 

 

Acrylic Butyl 

  

 246.3   247.7   287.5   248.3 

 255.0   246.3   284.6   243.7 

 245.8   214.0   268.7   276.7 

 250.7   242.7   302.6   254.9 

  

 

  340.7   263.4   272.6   271.4 

  270.1   341.6   332.6   303.9 

  371.6   307.0   362.2   324.7 

  306.6   319.1   358.1   360.1 

 

 

a) Input the data obtained: 
 

> Acrylic = scan("acrylic.data") 

1: 246.3 255.0 245.8 250.7 247.7 246.3 214.0 242.7 287.5 284.6 268.7 302.6 

13: 248.3 243.7 276.7 254.9 

17:  
 

The function scan() reads 16 items. 
 

> Butyl = scan("autyl.data") 

1: 340.7 270.1 371.6 306.6 263.4 341.6 307.0 319.1 272.6 332.6 362.2 358.1 

13: 271.4 303.9 324.7 360.1 

17:  
 

The function scan() reads 16 more items. 
 

b) Is pooling appropriate? 
 

> var.test(Acrylic, Butyl) 
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An F-test to compare two variances 

 

Data:  Acrylic and Butyl. 

F = 0.3633, the numerator df = 15, the denominator df = 15, the p-value = 

= 0.05878. 

The alternative hypothesis: the true ratio of the variances is not equal to 1.  

The 95-percent confidence interval: 
 

(0.1269485 1.0399078). 
 

Sample estimates 

The ratio of variances:  
 

0.3633. 
 

The inference: because the p-value is very small, pooling is not appropriate. 

 

c) Can H0 be rejected? Explain, based on the p-value of your test. 

 

Because it is a one-sided test, we specified the test is desired against 

alternatives less than  (mean) by setting the optional argument: alternative = 

"less". 
 

> t.test(Acrylic, Butyl, alternative = "less") 

 

The Welch's two-sample t-test 

 

Data:  Acrylic and Butyl.  

t = -5.8755, df = 24.629, the p-value = 2.094e-06. 

The alternative hypothesis: the true difference in the means is less than 0. 

The 95-percent confidence interval: 
 

(-Inf ; -43.86719). 
 

Sample estimates: the mean of x, the mean of y: 
 

257.2188;  319.0813. 
 

The inference: the p-value = 2.094e-06 is very small, so the null 

hypothesis is rejected. 
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Example 4.3.2. The aseptic packaging of juices is a method of packaging 

that entails rapid heating followed by quick cooling to room temperature in an 

air-free container. Such packaging allows the juices to be stored unrefrigerated. 

Two machines used to fill aseptic packages are compared. These data are 

obtained in the number of containers that can be filled per minute: 
 

 Machine I:  n1 = 25, 1 = 115.5, var1 = 25.2 

 Machine II: n2 = 25, 2 = 112.7, var2 = 7.6 
 

Input the data: 
 

 > n1 = 25 

 > mu1 = 115.5 

 > var1 = 25.2 

 > n2 = 25 

 > mu2 = 112.7 

 > var2 = 7.6. 
 

a) Is pooling appropriate? 

Calculate the observed value of test statistics: 
 

 > f = var1 / var2 

 > f 

 [1] 3.315789. 
 

Calculate the critical points using the function qf() (quantiles f distribution): 
 

 > qf(.05,n1-1,n2-1) 

 [1] 0.5040933 

 > qf(.95,n1-1,n2-1) 

 [1] 1.983760. 
 

The inference: the observed value of the test statistics is bigger than the 

upper critical point 1.984, so pooling is not appropriate. 

 

Calculate the p-value: 
 

 > 2*pf(f, n1-1, n2-1, lower.tail = F) 

 [1] 0.004712739. 
 

The inference: the p-value is very small, so pooling is not appropriate. 
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b) Construct a 90 % confidence interval on 1 - 2. For this, calculate 

the number of degrees of freedom: 
 

 > s1 = var1/n1 

 > s2 = var2/n2 

 > gamma =(s1+s2)^2/(s1^2/(n1-1)+s2^2/(n2-1)) 

 > gamma 

 [1] 37.26928. 
 

We obtain that the number of degrees of freedom is 37.  

Find a 90 % confidence interval on 1 - 2. The function qt() (quantiles 

t-distribution) is used in this case. The first argument of the function is the 

probabilities and the second one is the degrees of freedom 37: 
 

 > mu = mu1-mu2 

 > q = qt(.05, 37) 

 > qt(0.05,37) 

 [1] q = -1.687094 

 > mu - q*sqrt(s1+s2) 

 [1] 4.73244 

 > mu + q*sqrt(s1+s2) 

 [1] 0.8675596. 
 

The inference: the 90 % confidence interval on 1 - 2 is (0.8676; 

4.7324). 

 

4.4. A one-sample t-test 

 

We will focus on the one-sample t-test in this section. If we only knew 

the mean and standard deviation of a sample, how could we conduct the t-test 

using the theoretical mean? We can use the command pt (probabilities t-dis-

tribution). In Example 4.4.1, we first construct the t.value, then calculate the 

p-value. In Example 4.4.2, the sample data is given, so we can use the easier 

way for statistical testing. 

Example 4.4.1. A low-noise transistor for use in computing products is 

being developed. It is claimed that the mean noise level will be below the 2.5-dB 

level of products currently in use.  
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A sample of 16 transistors yields the mean x = 1.8 with the standard 

deviation s = .8. Find the p-value for the t-test. Could we think that H0 should 

be rejected? What assumption should we make concerning the distribution of 

the random variable x, the noise level of a transistor? 

Input the data: 
 

 > sample.mean = 1.8 

 > sample.sd = 0.8 

 > n = 16 

 > mu = 2.5. 
 

Calculate the t-value: 
 

 > t.value = (sample.mean - mu)/(sample.sd/sqrt(n)) 

 > t.value 

 [1] -3.5. 
 

Calculate the p-value using the R-function pt() (probabilities t distribution). 

Set the vector of quantiles (t.value) to the first argument and set the degrees 

of freedom to the second one: 
 

 > p.value = pt(t.value, n - 1) 

 > p.value 

 [1] 0.001611765. 
 

The inference: since the p-value is very small, H0 can be rejected. 

Example 4.4.2. Clams, mussels, and other organisms that adhere to 

the water intake tunnels of electrical power plants are called macrofoulants. 

These organisms can, if left unchecked, inhibit the flow of water through the 

tunnel.  

Various techniques have been tried to control this problem, among them 

increasing the flow rate and coating the tunnel with teflon, wax, or grease. In a 

year's time at a particular plant an unprotected tunnel accumulates a coating of 

macrofoulants that averages 5 inches in thickness over the length of the tunnel.  

A new silicone oil paint is being tested. It is hoped that this paint will reduce 

the amount of macrofoulants that adhere to the tunnel walls. The tunnel is 

cleaned, painted with the new paint, and put back into operation under normal 

working conditions.  
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At the end of a year's time the thickness in inches of the macrofoulants 

coating is measured at 16 randomly selected locations within the tunnel. 

These are the data: 
 

4.2  4.5  4.1  4.6 

4.4  4.0  4.7  4.3 

5.0  6.2  3.6  4.5 

5.1  3.5  3.0  2.8. 
 

Input the data in the R environment: 
 

> sample = scan("8-43.txt") 
 

Read 16 items: 
 

> sample 

[1] 4.2  4.5  4.1  4.6  4.4  4.0  4.7  4.3  5.0  6.2  3.6  4.5  5.1  3.5  3.0  2.8 
 

a) Do these data support the contention that the new paint reduces the 

average thickness of the macrofoulants within this tunnel? Explain, based on 

the p-value of the test. 

In this case, there are three arguments. The argument "mu = 5" attaches 

a value to the formal argument "mu", which represents the Greek letter  

conventionally used for the theoretical mean. Normally, the t.test() uses the 

default value "mu = 0", if it is not specified otherwise. The "alternative = "less" 

indicated that the test is designed against alternatives less than : 
 

> t.test(sample, mu = 5, alternative = "less") 

 

A one-sample t-test 

 

Data: the sample for which t = -3.4721, df = 15, the p-value = 0.001707. 

The alternative hypothesis: the true mean is less than 5.  

The 95-percent confidence interval: 
 

(-Inf; 4.644142). 
 

Sample estimates: the mean of x:  
 

[1] 4.28125. 
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The inference: because the p-value based on the t.test() is very small, 

the H0 can be rejected. 

 

b) If  had been preset at .05, would H0 have been rejected? 

Because the p-value = 0.0017 < alpha = 0.05, H0 can be rejected. 

 

4.5. Comparing the variance of a sample with a known value 

 

Example 4.5.1. Incompatibility is always a problem when working with 

computers. A new digital sampling frequency converter is being tested. It takes 

the sampling frequency from 30 to 52 kilohertz, word lengths of 14 to 18 bits 

and arbitrary formats and converts it to the output sampling frequency. 

The conversion error is thought to have a standard deviation of less 

than 150 picoseconds. These data are obtained on the sampling error made 

in 20 tests of the device: 
 

 133.2 -11.5 -126.1    17.9 139.4   

 -81.7   314.8   147.1   -70.4   104.3 

 56.9    44.4     1.9    -4.7    96.1   

 -57.3   -43.8   -95.5    -1.2     9.9. 
 

For these data: mean(x) = 28.69, std(x) = 104.93. 

 

a) Test H0:  = 0, H1:  ≠ 0, at the  = .1 level. 

 

Input the data: 
 

> sample = scan("8-49.txt") 
 

Read 20 items: 
 

> sample 

 [1]  133.2  -11.5 -126.1   17.9  139.4  -81.7  314.8  147.1  -70.4  104.3 

[11]   56.9   44.4    1.9   -4.7   96.1  -57.3  -43.8  -95.5   -1.2    9.9 

 

A one-sample t-test 

 

> t.test(sample) 
 

Data: a sample.  
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t = 1.2225, df = 19, the p-value = 0.2365. 

The alternative hypothesis: the true mean is not equal to 0.  

The 95-percent confidence interval: 
 

[1] -20.42544  77.79544 
 

Sample estimates: the mean of x:  
 

[1] 28.685. 
 

The inference: because the p-value is bigger than alpha = .1, H0 cannot 

be rejected. 

 

b) Test H0:  = 150, H1:  < 150 at the  = .1 level. 

Calculate the observed value of the test statistics chi2: 
 

 > sample.sd = sd(sample) 

 > sample.sd 

 [1] 104.9336 

 > pop.sd = 150 

 > n = 20 

 > chi2 = (n - 1) * sample.sd^2/pop.sd^2 

 [1] 9.2982. 
 

Calculate the p-value using the function pchisq() (probabilities chisquared 

distribution). The first argument is the vector of quantiles and the second one 

is the degrees of freedom: 
 

 > pchisq((n - 1) * sample.sd/pop.sd, n - 1) 

 [1] 0.1767. 
 

The inference: because the p-value is larger than alpha = .1, H0 cannot 

be rejected. 

c) Calculate the critical point, use the function qchisq() (quantiles 

chisquared distribution). Attach the vector probabilities to the first argument 

and the degrees of freedom to the second one: 
 

> qchisq(0.1,n-1) 

[1] 11.65091. 
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The inference: the observed value 9.3 is smaller than the critical point 11.7. 

The way of comparing the variance of samples with a known value is shown 

in the answer of question c).  

When we test the hypothesis for the value of variance, the test statistic 

used to test the hypothesis is known to follow a chi-squared distribution.    

R has a function for the chi-squared distribution. In this example, we use the 

functions pchisq() and qchisq() to calculate the p-value and critical points for 

the statistic of the chi-squared distribution. It is called in a similar way as other 

distributions introduced before.   

 

5. Regression analysis 

 

5.1. Simple linear regression 

 

For linear regression analysis, the function lm() is used (liner model). 

The lm() function can be used to carry out the simple and multiple linear 

regression analysis. The next example will show how to use the R command 

for linear regression analysis. 

 

Example 5.1.1. An investigation was conducted to study gasoline 

mileage in automobiles when used exclusively for urban driving. Ten properly 

tuned and serviced automobiles manufactured during the same year were 

used in the study. Each automobile was driven for 1000 miles and the average 

number of miles per gallon (mi/gal) (y) and the weight of the car in tons (x) was 

recorded at different ambient temperatures in K0(z). The data obtained are: 

 

Car number: 1 2 3 4 5 6 7 8 9 10 

Miles per 

gallon (y) 
17.9 16.5 16.4 16.8 18.8 15.5 17.5 16.4 15.9 18.3 

Weight in 

ton (x): 
1.35 1.90 1.70 1.80 1.30 2.05 1.60 1.80 1.85 1.40 

K0(z) 90 30 80 40 35 45 50 60 65 30 
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Input the data in R: 
 

> weight = c(1.35, 1.90, 1.70, 1.80, 1.30, 2.05, 1.60, 1.80, 1.85, 1.40)  

> temperature = c( 90, 30, 80, 40, 35, 45, 50, 60, 65, 30) 

> miles = c(17.9, 16.5, 16.4, 16.8, 18.8, 15.5, 17.5, 16.4, 15.9, 18.3) 

 

Linear regression analysis 

 

The linear regression function in R: 
 

> lm(miles~weight+temperature) 
 

The call: 
 

lm(formula = miles ~ weight + temperature) 
 

The coefficients: 
 

 (Intercept) weight temperature 

 24.74887 -4.15933 -0.01490 
 

The argument to lm() is a model formula that describes the model to be 

fit. In the formula, the tilde symbol "~" should be read as "described by".  

The output of lm() is very brief. All you see is the coefficients, which indicate 

the estimated intercept and the estimated slope for each variable. The best 

fitting straight line can be obtained from these estimated values, but no other 

information is given from the output. In fact, the lm-object contains much more 

information than you see when it is printed.  

The summary() is an extraction function that is used to print out the 

desired quantities of a regression analysis: 
 

> summary(lm(miles~weight+temperature)) 
 

The call: 
 

lm(formula = miles ~ weight + temperature). 

 

The results 
 

The residuals: 
 

 Min  1Q  Median  3Q  Max  

 -0.185929 -0.077793 0.005608 0.105263 0.150812  



43 

The coefficients: 
 

  Estimate  Std. error t-value  Pr(>|t|)  

 (Intercept) 24.748874 0.348882 70.938  2.91e-11  

 weight -4.159335 0.186705 -22.278 9.28e-08  

 temperature -0.014895 0.002276 -6.545 0.00032  
 

The inference: the residual standard error: 0.1416 on 7 degrees of freedom; 

The multiple R-Squared: 0.9866; the adjusted R-squared: 0.9827; 

F-statistic: 257.3 on 2 and 7 DF; the p-value: 2.798e-07. 

 

The above is a format that looks more like what other statistical packages 

would output.  

 

5.2. Residuals and fitted values 

 

There are two further extraction functions (fitted() and resid()) that    

can be used to extract information about the results of a regression analysis. 

Let's construct the residual and fitted values in R for the observations of 

Example 5.1.1. 

Store the value returned by the lm function under the name "lmMiles". 
 

> lmMiles = lm(miles~weight+temperature) 
 

Output the fitted values that you would expect for the given x-value 

according to the # fitting straight line by the function fitted(): 
 

> fitted(lmMiles) 
 

The results of applying this function are as follows: 
 

 1 2 3 4 5 

 17.79322 16.39929 16.48640 16.66627 18.82041  
 

 6 7 8 9 10 

 15.55196 17.34919 16.36837 16.08593 18.47895.  
 

Show the difference between the above fitted values and the observed 

values: 
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> resid(lmMiles) 
 

 1 2 3 4 5  

 0.10677943 0.10071238 -0.08640365 0.13372910 -0.02041326  

 6 7 8 9 10 

 -0.05196217 0.15081236 0.03162945 -0.18592873 -0.17895490. 

 

5.3. The confidence and prediction interval 

 

There are two kinds of bands around the fitted lines: the confidence 

interval and the prediction interval. The predicted values for these two bands 

can be extracted with the function predict(). The main arguments in the predict() 

function are: 

object: the linear mode object you want to predict values from; 

newdata: an optional data frame in the which() function to look for 

variables with which() to predict; if omitted, the fitted values are used; 

interval: the type of the interval calculation, including "confidence" and 

"prediction". 

level: the tolerance/confidence level. 

You can set interval = "confidence" or interval = "prediction" to obtain 

the confidence or prediction interval by evaluating the regression functions.  

Calculate the confidence and prediction interval for the regression 

model of Example 5.1.1. The result of the linear regression is saved, for 

example, in "lmMiles": 
 

> predict(lmMiles,interval = "confidence") 
 

  fit lwr upr 

 1 17.79322 17.53515 18.05129 

 2 16.39929 16.21686 16.58171 

 3 16.48640 16.30320 16.66961 

 4 16.66627 16.53203 16.80052 

 5 18.82041 18.59530 19.04553 

 6 15.55196 15.35477 15.74915 

 7 17.34919 17.23703 17.46134 

 8 16.36837 16.24054 16.49620 

 9 16.08593 15.93504 16.23682 

 10 18.47895 18.27011 18.68780. 
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The fit is the expected values, and lwr and upr are the lower and upper 

confidence limits for the expected values. Because the argument "newdata" is 

omitted here, the fitted values are used to produce the required bands. If you 

want to find a confidence or prediction interval on the new data, you need to 

add this new data in the argument "newdata".  
 

Set the new data: 
 

> newdata = data.frame(weight = 1.5, temperature = 40) 
 

Find the confidence interval obtained by the regression function in the 

newdata frame: 
 

> predict(lmMiles, newdata, interval = "confidence") 

 $fit 

 fit  lwr upr 

 [1,] 17.91407  17.76318  18.06496 
 

> predict(lmMiles, newdata, interval = "prediction", level = .90) 

 fit lwr upr 

 [1,] 17.91407  17.61982  18.20832. 
 

You may set the confidence or prediction level to the argument "level = 

= .90". 

 

5.4. Correlation 
 

The function cor() (correlation) can be used to compute the correlation 

between two or more vectors. 

Calculate the correlation between two predict or variables, miles and 

weight.  
 

 > cor(miles, weight) 

 [1] -0.9510329. 
 

You can obtain the entire matrix of correlations between all variables in 

a data frame.  

Set the data frame under the name x: 
 

> x = data.frame(miles,weight,temperature) 

> cor(x) 
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  miles weight temperature 

 miles 1.0000000 -0.9510329 -0.1878411 

 weight -0.9510329 1.0000000 -0.1022271 

 temperature -0.1878411 -0.1022271 1.0000000. 
 

Now you obtain the correlation between all variables. This is exactly the 

same p-value as in the regression analysis in the output of the summary() 

command. 

 

5.5. Testing the hypotheses about the model parameters 

 

R can automatically do a hypotheses test for the assumption 0 = 0, 

1=0, 2= 0 … The testing p-value is included in the output of the summary() 

command in the column Pr(>|t|). 
 

> summary(lmMiles) 
 

The call: 
 

lm(formula = miles ~ weight + temperature) 
 

The residuals: 
 

 Min 1Q Median 3Q Max  

 -0.185929 -0.077793 0.005608 0.105263 0.150812  
 

The coefficients: 
 

  Estimate  Std. Error t-value  Pr(>|t|)     

 (Intercept) 24.748874 0.348882 70.938  2.91e-11  

 weight -4.159335 0.186705 -22.278  9.28e-08  

 temperature -0.014895 0.002276 -6.545 0.00032  
 

The residual standard error: 0.1416 on 7 degrees of freedom. 

The inference: the multiple R-squared: 0.9866; the adjusted R-squared: 

0.9827; F-statistic: 257.3 on 2 and 7 DF, the p-value: 2.798e-07. 

The inference: the p-values of the Pr(>|t|) column are very small, so all 

of the hypotheses have to be rejected. 
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5.6. The criteria for selection of variables 

 

The function step() can be used to choose a model by AIC (Akaike' 

Information Criterion) in a stepwise algorithm. The main arguments to the 

function are: 

object: the object that is used as the initial model in the stepwise search;  

direction: the mode of the stepwise search can be one of "both", 

"backward", or "forward" with the default of "both"; if the "scope" argument is 

missing, the default for direction is "backward";  

trace: if positive, information is printed during the running of "step"; larger 

values may give more detailed information.  

steps: the maximum number of steps to be considered; the default is 1000. 

Let's use the stepwise method to choose a regression model of     

Example 5.1.1: 
 

> step(lmMiles) 
 

Start from  AIC = -36.66;  
 

miles ~ weight + temperature. 
 

The result: 
 

  Df Sum of Sq RSS AIC 

 <none>   0.140 -36.662 

 - temperature 1 0.859 0.999 -19.033 

 - weight 1 9.951 10.091 4.091 
 

The call: 
 

lm(formula = miles ~ weight + temperature). 
 

The coefficients: 
 

 (Intercept) weight temperature 

 24.74887 -4.15933 -0.01490. 
 

The inference: the stepwise-selected model is returned. 
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5.7. Diagnostics 

 

The influence() function provides the basic quantities that are used in 

forming a wide variety of diagnostics for checking the quality of regression fits. 
 

> influence(lmMiles) 

$hat 

 1 2 3 4 5 

 0.5940565 0.2968422 0.2993973 0.1607538 0.4520247  

 6 7 8 9 10 

 0.3468339 0.1122063 0.1457563 0.2030800 0.3890490.  
 

$coefficients 
 

  (Intercept) weight temperature 

 1 0.11543054 -0.127260994 2.362584e-03 

 2 -0.02779725 0.049047656 -7.625658e-04 

 3 0.05529260 -0.012707478 -8.826730e-04 

 4 -0.01009853 0.030314626 -4.713150e-04 

 5 -0.05720109 0.025699706 1.986451e-04 

 6 0.07205954 -0.050574845 8.948367e-05 

 7 0.06283837 -0.023070599 -1.372913e-04 

 8 -0.01507530 0.008648304 8.175270e-05 

 9 0.15034206 -0.077303183 -8.417170e-04 

 10 -0.38631183 0.154322657 1.876765e-03. 
 

$sigma 

 1 2 3 4 5      

 0.1367860 0.1448706 0.1470226 0.1408550 0.1525283  

 6 7 8 9 10 

 0.1506740 0.1382816 0.1523038 0.1271291 0.1210590. 
 

$wt.res 

 1 2 3 4 5   

 0.10677943 0.10071238 -0.08640365 0.13372910 -0.02041326   

 6 7 8 9 10 

 0.05196217 0.15081236 0.03162945 -0.18592873 -0.17895490. 
 

The result of influence() contains the following components: 

hat: a vector containing the diagonal of the "hat" matrix; 
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coefficients: a matrix whose i-th row contains the change in the estimated 

coefficients which results when the i-th case is dropped from the regression.  

sigma: a vector whose i-th element contains the estimate of the residual 

standard deviation obtained when the i-th case is dropped from the regression. 

wt.res: a vector of weighted residuals. 

There is a set of functions that can be used to compute some of the 

regression (leave-one-out deletion) diagnostics for linear and generalized linear 

models. 

 

5.7.1. Studentized deleted residuals 

 

The functions rstudent() (residual studentized) and rstandard() 

(residual standardized) are used to obtain the studentized and standardized 

residuals respectively. 

 

> rstudent(lmMiles) 

 1 2 3 4 5        

 1.2252170 0.8290415 -0.7021213 1.0363558 -0.1807929  

 6 7 8 9 10  

 -0.4267142 1.1574880 0.2246932 -1.6383022 -1.8912248 

 

5.7.2. Hat matrix leverage 
 

> hatvalues(lmMiles) 

 1 2 3 4 5    

 0.5940565 0.2968422 0.2993973 0.1607538 0.4520247  

 6 7 8  9 10  

 0.3468339 0.1122063 0.1457563 0.2030800 0.3890490 
 

Note: the hatvalues() function gives the same result with the values of 

the hat component in the influence function. 

 

5.7.3. The influence on single fitted values – DFFITS 
 

> dffits(lmMiles) 

 1 2 3 4 5   

 1.48215679 0.53865748 -0.45898682 0.45357044 -0.16420334  

 6 7 8 9 10 

 -0.31094671 0.41149928 0.09281384 -0.82702815 -1.50918391. 
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5.7.4. The influence on all fitted values – Cook's distance 

 

> cooks.distance(lmMiles) 

 1 2 3 4 5           

 0.683339996 0.101239673 0.075706564 0.067857705 0.010428696  

 6 7 8 9 10 

 0.036493352 0.053830944 0.003322094 0.183778982 0.554937168. 

 

5.7.5. The influence on the regression coefficients – DFBETAS 

 

> dfbetas(lmMiles) 

  (Intercept) weight temperature 

 1 0.34249727 -0.70559225 1.07471017 

 2 -0.07787532 0.25676649 -0.32752396 

 3 0.15263745 -0.06555043 -0.37356120 

 4 -0.02909806 0.16322254 -0.20820198 

 5 -0.15220605 0.12778442 0.08103511 

 6 0.19410255 -0.25456366 0.03695314 

 7 0.18443299 -0.12653035 -0.06177668 

 8 -0.04017292 0.04306461 0.03339930 

 9 0.47996934 -0.46116093 -0.41197125 

 10 -1.29514655 0.96679126 0.96462535. 

 

5.8. Examples 

 

Example 5.8.1. The body fat example. We want to study the relation of 

the amount of body fat (y) to several possible predictor variables, based on a 

sample of 20 healthy females 25 – 34 years old. The possible predictor 

variables are triceps skinfold thickness (x1), thigh circumference (x2), and 

midarm circumference (x3). The amount of body fat for each of the 20 persons 

was obtained by a cumbersome and expensive procedure requiring the 

immersion for the person in water. 

 

1) Read the data from the data file.  
 

> BodyFat = scan("CH07TA01.DAT", list(x1 = 0, x2 = 0, x3 = 0, y = 0)) 
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Read 20 records. The first argument is the name of the file where the data 

are reading from. The second argument is a dummy list structure that 

establishes the mode of the vectors to be read. The result, BodyFat, is a list 

whose components are the three vectors read in. You can access the vectors 

separately like:  BodyFat$x1, BodyFat$x2, BodyFat$y. 

 

2) List the data: 
 

> BodyFat 

$x1 

 [1] 19.5 24.7 30.7 29.8 19.1 25.6 31.4 27.9 22.1 25.5 31.1 30.4 18.7 19.7 

14.6 29.5 27.7 30.2 22.7 25.2 
 

$x2 

 [1] 43.1 49.8 51.9 54.3 42.2 53.9 58.5 52.1 49.9 53.5 56.6 56.7 46.5 44.2 

42.7 54.4 55.3 58.6 48.2 51.0 
 

$x3 

 [1] 29.1 28.2 37.0 31.1 30.9 23.7 27.6 30.6 23.2 24.8 30.0 28.3 23.0 28.6 

21.3 30.1 25.7 24.6 27.1 27.5 
 

$y 

 [1] 11.9 22.8 18.7 20.1 12.9 21.7 27.1 25.4 21.3 19.3 25.4 27.2 11.7 17.8 

12.8 23.9 22.6 25.4 14.8 21.1 
 

3) Regression of y on x1: 
 

> lm(BodyFat$y~BodyFat$x1)) 
 

The call: 
 

lm(formula = BodyFat$y ~ BodyFat$x1). 

 

The coefficients: 

 (Intercept) BodyFat$x1 

 -1.4961 0.8572. 
 

4) Summary of the regression of y on x1, x2, and x3: 
 

> summary(lm(BodyFat$y~BodyFat$x1+BodyFat$x2+BodyFat$x3)) 
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The call: 
 

lm(formula = BodyFat$y ~ BodyFat$x1 + BodyFat$x2 + BodyFat$x3). 
 

The residuals: 

 Min 1Q Media 3Q Max  

 -3.7263 -1.6111 0.3923 1.4656 4.1277  
 

The coefficients: 

  Estimate Std. Error t-value Pr(>|t|) 

 (Intercept) 117.085  99.782 1.173 0.258 

 BodyFat$x1 4.334  3.016 1.437 0.170 

 BodyFat$x2 -2.857 2.582 -1.106 0.285 

 BodyFat$x3 -2.186 1.595 -1.370 0.190 
 

The inference: the residual standard error: 2.48 on 16 degrees of freedom; 

the multiple R-squared: 0.8014; the adjusted R-squared: 0.7641; F-statistic: 

21.52 on 3 and 16 DF, the p-value: 7.343e-06. 

 

5) Testing the assumptions of the model of regression of y on x1 and x2. 

The validity of the model can be checked graphically. We can use the plot 

function to test if the regression model is significant. We can test for correlations 

by looking if there are trends in the data. This can be done with plots of the 

residuals vs time and order. We can test the assumption that the errors have the 

same variance with plots of residuals vs time order and fitted values. 

The plot command will do these tests if we give it the result of the 

regression. It will plot 4 separate graphs unless you tell R to place 4 graphs on 

one plot window in advance with the function par(mfrow = c(2,2)), Fig. 5.1. The 

function par() (parameters) is used to set the graphical parameters. A vector of 

the form c(2,2) is set to the argument mfrow, which tell you the subsequent 

figures will be drawn in a nrow-by-ncolumn array on the device by rows. 

Save the result of regression y on x1 and x2 under the name of lmResult. 
 

> lmResult = lm(BodyFat$y~BodyFat$x1+BodyFat$x2) 
 

Set the argument of graphical parameters to indicate the subsequent 

graphs that will be displayed in 2 rows by 2 columns fashion on the same plot 

window. 
 

> par(mfrow = c(2,2)) 
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Plot four graphs of the regression model. 
 

> plot(lmResult) 
 

This is different from the plot(x,y), which produces a scatter plot. There 

are four plots produced by plot (lmResult): 

 Residuals vs fitted. This plots the fitted values against the residuals. 

Look for spread around the line y = 0 and no obvious trend. 

 Normal Q-Q plot. The residuals are normal if this graph falls close to 

a straight line. 

 Scale-Location plot. This plot shows the square root of the standardized 

residuals. The tallest point has the largest residuals. 

 Cook's distance plot. This plot identifies which plot has a lot of influence 

in the regression line.  

 
Fig. 5.1. Four scatter plot graphs for the regression model 
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6) Examine whether there are outlying y observations with two predictor 

variables (x1, x2). 

Calculate the studentized residuals for the regression model: 
 

> rstudent(lmResult) 

 1 2 3 4  

 -0.7299854027 1.5342541325 -1.6543295725 -1.3484842072 

 5 6 7 8  

 -0.0001269809 -0.1475490938 0.2981276214 1.7600924916    

 9 10 11 12 

 1.1176487404 -1.0337284208 0.1366610657 0.9231785040   

 13 14 15 16  

 -1.8259027246 1.5247630510 0.2671500921 0.2581323416 

 17 18 19 20           

 -0.3445090997 -0.3344080836 -1.1761712768 0.4093564171.  
 

Cases 3, 8, and 13 have the largest absolute studentized residuals. Now 

we use the Bonferroni test procedure with a significance level  = .10 to test if 

case 13, which has the largest absolute studentized residual, is an outlier. 

The function qt() (quantile t-distribution) gives the quantile value of      

t-distribution. The first argument is the significance level, the second one is 

the degrees of freedom.  
 

>qt(.9975,16) 

[1] 3.251993 
 

The inference: since |t13| = 1.825  3.252, we conclude that case 13 is 

not an outlier. 

 

7) Identifying outlying observations.  

Calculate the hat matrix for identifying outlying observations. 
 

> hatvalues(lmResult) 

 1 2 3 4 5     

 0.20101253 0.05889478 0.37193301 0.11094009 0.12861620  

 6 7 8 9 10           

 0.24801034 0.15551745 0.09628780 0.11463564 0.11024435  

 11 12 13 14 15          

 0.12033655 0.10926629 0.17838181 0.14800684 0.33321201  
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 16 17 18 19 20 

 0.09527739 0.10559466 0.19679280 0.06695419 0.05008526. 
 

The two largest leverage values are h3,3 = .372 and h15,15 = .333. Both 

exceed the criterion of the two mean leverage values, 2p/n = 2(3)/20 = .30, 

and both are separated by a substantial gap from the next largest leverage 

value, h55 = .248 and h11 = .201. Having identified cases 3 and 15 as outlying 

in terms of their x-values, obtain the influence on the single fitted value – 

DFFITS: 
 

> dffits(lmResult) 

 1 2 3 4             

 -3.661472e-01 3.838103e-01 -1.273067e+00 -4.763483e-01 

 5 6 7 8           

 -7.292347e-05 -5.668650e-02 1.279371e-01 5.745212e-01    

 9 10 11 12  

 4.021649e-01 -3.638725e-01 5.054583e-02 3.233366e-01   

 13 14 15 16 

 -8.507812e-01 6.355141e-01 1.888521e-01 8.376829e-02   

 17 18 19 20  

 -1.183735e-01 -1.655265e-01 -3.150707e-01 9.399706e-02. 
 

The only DFFITS value that exceeds the guideline for a medium-size 

data set is for case 3, where |(DFFITS) 3| = 1.273. This value is somewhat 

larger than the guideline of 1. However, the value is close enough to 1, so 

that the case may not be influential enough to require remedial action. 

Obtain the influence on all fitted values – Cook's distance: 
 

> cooks.distance(lmResult) 

 1 2 3 4   

 4.595055e-02 4.548118e-02 4.901567e-01 7.216190e-02   

 5 6 7 8            

 1.883399e-09 1.136518e-03 5.764939e-03 9.793853e-02  

 9 10 11 12             

 5.313352e-02 4.395704e-02 9.037986e-04 3.515436e-02  

 13 14 15 16          

 2.121502e-01 1.248925e-01 1.257530e-02 2.474925e-03 

 17 18 19 20 

 4.926142e-03 9.636470e-03 3.236006e-02 3.096787e-03. 
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Case 3 has the largest Cook's distance value, with the next largest 

distance measure D13 = .212 being substantially smaller. To assess the mag-

nitude of the influence of case 3 (D3 = .490), we refer to the corresponding   

F-distribution.  

The function pf() (probability of f-distribution) gives the F distribution 

function. Here we set the probability = .490 to the first argument and the 

degrees of freedom 3 and 7 to the second and third arguments of function qt().  
 

> pf(.490,3,17) 

[1] 0.3061611. 
 

The influence on the regression coefficients – dfbetas(): 
 

> dfbetas(lmResult) 

  (Intercept) BodyFat$x1  BodyFat$x2 

 1 -3.051821e-01 -1.314856e-01 2.320319e-01 

 2 1.725732e-01 1.150251e-01 -1.426129e-01 

 3 -8.471013e-01 -1.182525e+00 1.066903e+00 

 4 -1.016120e-01 -2.935195e-01 1.960719e-01 

 5 -6.372122e-05 -3.052747e-05 5.023715e-05 

 6 3.967715e-02 4.008114e-02 -4.426759e-02 

 7 -7.752748e-02 -1.561293e-02 5.431634e-02 

 8 2.614312e-01 3.911262e-01 -3.324533e-01 

 9 -1.513521e-01 -2.946556e-01 2.469091e-01 

 10 2.377492e-01 2.446010e-01 -2.688086e-01 

 11 -9.020885e-03 1.705640e-02 -2.484518e-03 

 12 -1.304933e-01 2.245800e-02 6.999608e-02 

 13 1.194147e-01 5.924202e-01 -3.894913e-01 

 14 4.517437e-01 1.131722e-01 -2.977042e-01 

 15 -3.004276e-03 -1.247567e-01 6.876929e-02 

 16 9.308463e-03 4.311347e-02 -2.512499e-02 

 17 7.951208e-02 5.504357e-02 -7.609008e-02 

 18 1.320522e-01 7.532874e-02 -1.161003e-01 

 19 -1.296032e-01 -4.072030e-03 6.442931e-02 

 20 1.019045e-02 2.290797e-03 -3.314146e-03. 
 

Case 3 is the only case that exceeds the guideline of 1 for the medium-

size data sets for both x1 and x2. Thus, case 3 is again tagged as potentially 

influential. However, the DFBETAS values do not exceed 1 by very much so 

that case 3 may not be so influential as to require remedial action.  
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Example 5.8.2. Chemical shipment. The data to follow, taken on 20 incoming 

shipments of chemicals in drums arriving at a warehouse, show the number 

of drums in the shipment (x1), the total weight of the shipment (x2, in hundred 

pounds), and the number of minutes required to handle the shipment (y).  

 

Input the data: 
 

> ChemiShip = scan("CH06PR09.DAT", list(y = 0, x1 = 0, x2 = 0)) 
 

Read 20 records. Show the data set: 
 

> ChemiShip 

$y 

 [1] 58 152 41 93 101 38 203 78 117 44 121 112 50 82 48 127 140 155 39 

[20] 90 
 

$x1 

 [1] 7 18 5 14 11 5 23 9 16 5 17 12 6 12 8 15 17 21 6 11 
 

$x2 

 [1] 5.11 16.72 3.20 7.03 10.98 4.04 22.07 7.03 10.62 4.76 11.02 9.51 

[13] 3.79 6.45 4.60 13.86 13.03 15.21 3.64 9.57. 
 

a) Obtain the studentized deleted residuals and identify any outlying y 

observations. Use the Bonferroni's outlier test procedure with  = 0.05. State 

the decision rule and conclusion. 

Save the result of the regression model: 
 

> lmOut = lm (ChemiShip$y~ChemiShipx1+ChemiShipx2) 
 

Obtain the studentized deleted residuals: 
 

> rstudent(lmOut) 

 1 2 3 4 5            

 0.42675254 -0.80047414 0.48150671 0.24531968 0.08475496   

 6 7 8 9 10 

 -0.89457378 0.20652191 0.92718720 -0.10385591 -0.44555083 

 11 12 13 14 15          

 -0.45241008 3.62623361 0.90389470 0.13072481 -1.75127470   

 16 17 18 19 20           

 -0.60782399 1.22203071 -0.95432624 -1.02583519 -0.61414823. 
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In the upper list of the studentized deleted residuals, cases 12, 15, and 17 

are the most outlying ones. We test case 12, which has the largest absolute 

studentized deleted residual (3.626) with  = 0.05.  

Use the function qt() (quantiles of Student t-distribution) to calculate the 

quantile value with  = 0.05. The probability of Student's t-distribution and the 

degrees of freedom are set to the arguments:  
 

> qt(1-0.05/40,16) 

[1] 3.580522 
 

The inference: since |t12| = 3.626 > 3.580, we conclude that case 12 is 

an outlier.   

The second largest case |t15| = 1.75 < 3.58, so this case is not an outlier. 

b) Identify any outlying x-observations. 

Obtain the hat matrix leverage: 
 

> hatvalues(lmOut)  
 

 1 2 3 4 5  

 0.09133349 0.19376540 0.13099986 0.26847934 0.14900387 

 6 7 8 9 10 

 0.14056367 0.42868587 0.06651639 0.13453992 0.16452717   

 11 12 13 14 15  

 0.17857817 0.05138802 0.11031467 0.15597401 0.0953742 

 16 17 18 19 20  

 0.12815463 0.09698045 0.23049569 0.11180602 0.07251911. 
 

The inference: the largest leverage value is h77 = 0.429. It exceeds the 

criterion of twice the mean leverage value, 2p/n = 2(3) / 20 = .30. The next two 

largest leverage values are case 4 and case 18, but both of them are much smaller 

than the value of case 7. So we identify case 7 as an outlying x observation.  

c) Management wishes to predict the number required to handle the 

next shipment containing x1 = 15 drums whose total weight is x2 = 8 (hundred 

pounds). Construct a scatter plot of x2 against x1 and determine visually 

whether this prediction involves an extrapolation beyond the range of the data.  

 

Add the predictor values to x1 and x2: 
 

> addx1 = c(ChemiShip$x1,15) 

> addx2 = c(ChemiShip$x2, 8) 
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Construct a scatter plot of x2 against x1: 
 

> plot ( addx1, addx2) 
 

R provides a useful function  identify() to find the index of the closest (x; y) 

coordinates to the mouse click. The function identify reads the position of the 

graphics pointer when the (first) mouse button is pressed. It then searches the 

coordinates given in x and y for the point closest to the pointer. If this point is 

close to the pointer, its index will be returned as part of the value of the call.  

Three arguments are set to the function: the coordinates of the points in 

a scatter plot and the number of the points we want to identify. We identify the 

three outliers and find the corresponding index: 
 

 > identify( addx1, addx2, n = 3) 

 [1]  16 21 4 
 

In the obtained scatter plot, the predictor value case 21 falls within the 

range of the scatter area, so this prediction involves an extrapolation beyond 

the range of the data. 

Read the data from the data frame separately: 
 

 > y = ChemiShip$y 

 > x1 = ChemiShip$x1 

 > x2 = ChemiShip$x2 
 

Create a data frame for setting the estimation data set: 
 

> new = data.frame(x1 = 15, x2 = 8) 
 

Compute the prediction interval for all the regression data sets: 
 

> predict(lm(y~x1+x2), interval = "prediction") 

  fit lwr upr 

 1 55.65775 43.27632 68.03918 

 2 156.08097 143.13151 169.03043 

 3 38.41952 25.81509 51.02395 

 4 91.78733 78.43879 105.13587 

 5 100.54737 87.84301 113.25173 

 6 42.68637 30.02876 55.34399 

 7 202.09731 187.93088 216.26374 

 8 72.94678 60.70694 85.18662 
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 9 117.55927 104.93512 130.18341 

 10 46.34368 33.55379 59.13357 

 11 123.35921 110.49239 136.22603 

 12 96.84849 84.69576 109.00121 

 13 45.18459 32.69595 57.67323 

 14 81.30495 68.56211 94.04779 

 15 56.83527 44.43094 69.23960 

 16 130.24902 117.66045 142.83759 

 17 133.56918 121.15576 145.98260 

 18 159.71512 146.56796 172.86229 

 19 44.42265 31.92563 56.91967 

 20 93.38515 81.11091 105.65939. 
 

Compute the prediction interval for the estimated data set: 
 

> predict(lm(y~x1+x2), new, interval = "prediction") 

  fit lwr upr 

 [1,] 100.4826 87.1526 113.8127. 
 

d) Case 7 appears to be an outlying x-observation and case 12 an 

outlying y-observation. Obtain the DFFITS, DFBETAS, and the Cook's distance 

values for each of these cases to assess their influence. With these, one can 

conclude the following. 

Obtain the DFFITS: 
 

> dffits(lmOut) 
 

 1 2 3 4 5            

 0.13529722 -0.39242323 0.18695102 0.14861906 0.03546501 

 6 7 8 9 10 

 -0.36178109 0.17889501 0.24750183 -0.04094805 -0.19771969 

 11 12 13 14 15         

 -0.21094213 0.84399998 0.31828507 0.05619611 -0.56863730 

 16 17 18 19 20             

 -0.23303720 0.40047521 -0.52230327 -0.36396220 -0.17173031. 
 

The largest DFFITS value is 0.843 of case 12, but this value does not 

exceed 1, which is the guideline for the medium data set, so there is no 

influence case in this measurement. 
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Obtain the DFBETAS: 
 

> dfbetas(lmOut) 
 

  (Intercept) ChemiShip$x1 ChemiShip$x2 

 1 0.122855552 -0.04327413 0.0098720883 

 2 0.061012751 0.14958419 -0.2528778589 

 3 0.176732390 -0.05463481 -0.0008834814 

 4 -0.025976645 0.13138441 -0.1317456914 

 5 0.017823424 -0.02787250 0.0287067303 

 6 -0.351927749 0.19100547 -0.0943824289 

 7 -0.060748101 -0.05685992 0.1123483643 

 8 0.198609085 -0.08507044 0.0451016524 

 9 0.012636770 -0.03157524 0.0264043658 

 10 -0.187199214 0.13499584 -0.0892584612 

 11 0.080846469 -0.17385681 0.1449559800 

 12 0.353791892 -0.12188051 0.1378580288 

 13 0.286042063 -0.05861754 -0.0316941000 

 14 0.001831733 0.04311705 -0.0463174805 

 15 -0.370513959 -0.12638404 0.2571081607 

 16 -0.021673104 0.11848066 -0.1618347451 

 17 -0.138884614 0.16427966 -0.0672002726 

 18 0.312765306 -0.35456723 0.2165300133 

 19 -0.320519790 0.04866628 0.0553440075 

 20 -0.099571789 0.09480214 -0.0927223402 
 

The inference: there is no case's DFBETAS value that exceeds guide-

line 1, so no case influences the regression model. 

 

Obtain the Cook's distance: 
 

> cooks.distance(lmOut) 

 1 2 3 4      

 0.0064101777 0.0524401531 0.0122015599 0.0077933871   

 5 6 7 8 

 0.0004452592 0.0441472158 0.0113044124 0.0205890007 

 9 10 11 12    

 0.0005934465 0.0136757853 0.0155601581 0.1384778737 
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 13 14 15 16 

 0.0341358732 0.0011172659 0.0960985497 0.0187994039 

 17 18 19 20  

 0.0519524153 0.0914135514 0.0440206341 0.0102042828. 
 

Case 12 has the largest Cook's distance value 0.1385, the next largest 

distance D15 = 0.096 is substantially small. Let's test the influence of case 12. 
 

Compute the F-distribution function using pf (probability f distribution): 
 

> pf(0.1385, 3,17) 

[1] 0.06439451 
 

Case 12 is the 6th percentile of this distribution, so it does not have any 

influence on the fitted values. 

e) Calculate the Cook's distance Di for each case and prepare an index 

plot. Are any cases influential according to this measure? 

Construct an index plot by using the plot function. The argument is set as 

the result of the regression lmOut. The output of the plot function is 4 separate 

graphs. You can see the graphs sheet by sheet by pressing the enter button. 

The index plot of the Cook's distance is the last graph (Fig. 5.2): 
 

> plot(lmOut) 

 
 

Fig. 5.2. The index plot for the Cook's distance 
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The inference: in this index plot, the most influential case is case 12, 

and cases 15 and 18 are two next largest influential ones to this regression 

model. 

Example 5.8.3. Cosmetics sales. An assistant in the district sales office 

of a national cosmetics firm obtained data, shown below, on advertising 

expenditures and sales last year in the district's 14 territories. X1 denotes 

expenditures for point-of-sale displays in beauty salons and department stores 

(in thousand dollars), and X2 and X3 represent the corresponding expenditures 

for local media advertising and the prorated share of national media 

advertising, respectively. Y denotes sales (in thousand cases). The assistant 

was instructed to estimate the increase in the expected sales when X1 is 

increased by 1 thousand dollars and X2 and X3 are held constant, and was told 

to use an ordinary multiple regression model with a linear term for the predictor 

variables and with independent normal error terms: 
 

 i Yi X1i X2i X3i 
 

 1 8.26 4.2 4.0 3.0 

 2 14.70 6.5 6.5 5.0 

 3 9.73 3.0 3.5 4.0 

 4 5.62 2.1 2.0 3.0 

 5 7.84 2.9 3.0 4.0 

 6 12.18 7.2 7.0 3.0 

 7 8.56 4.8 5.0 4.5 

 8 10.77 4.3 4.0 5.0 

 9 7.56 2.6 2.5 5.0 

 10 8.90 3.1 3.0 4.0 

 11 12.51 6.2 6.0 4.5 

 12 10.46 5.5 5.5 5.0 

 13 7.15 2.2 2.0 4.0 

 14 6.74 3.0 2.8 3.0 
 

a) State the regression model to be employed and fit it to the data. 

 

Input the data. The data was saved in the file CH09PR13.DAT: 
 

> CosmeticsSales = scan ("CH09PR13.DAT", list(Y = 0, X1 = 0, X2 = 0, X3 = 0)) 
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Read 14 records: 
 

> CosmeticsSales 

$Y 

 [1]  8.26 14.70  9.73  5.62  7.84 12.18  8.56 10.77  7.56  8.90 12.51 

 [12] 10.46 7.15  6.74 

 [13]   
 

$X1 

 [1] 4.2 6.5 3.0 2.1 2.9 7.2 4.8 4.3 2.6 3.1 6.2 5.5 2.2 3.0 
 

$X2 

 [1] 4.0 6.5 3.5 2.0 3.0 7.0 5.0 4.0 2.5 3.0 6.0 5.5 2.0 2.8 
 

$X3 

 [1] 3.0 5.0 4.0 3.0 4.0 3.0 4.5 5.0 5.0 4.0 4.5 5.0 4.0 3.0. 
 

Build the regression model and save the regression result: 
 

>lm_Result = 

+lm(CosmeticsSales$Y~CosmeticsSales$X1+CosmeticsSales$X2+Cosmetics

Sales$X3) 
 

Summary results: 
 

> summary(lm_Result) 
 

The call: 
 

lm(formula = CosmeticsSales$Y ~ CosmeticsSales$X1 + CosmeticsSales$X2 + 

+ CosmeticsSales$X3) 
 

The residuals: 

 Min 1Q Median 3Q Max  

 -2.20899 -0.30679 -0.04512 0.55678 1.58152  
 

The coefficients: 
 

  Estimate Std. Error t-value Pr(>|t|)   

(Intercept) 0.9796 1.7270 0.567 0.5831   

CosmeticsSales$x1 0.4096 1.5423 0.266 0.7959   

CosmeticsSales$x2 0.8300 1.5633 0.531 0.6071   

CosmeticsSales$x3 0.8163 0.4144 1.970 0.0771 . 
 



65 

The inference: the residual standard error: 1.152 on 10 degrees of freedom; 

the multiple R-squared: 0.8402; the adjusted R-squared: 0.7922; F-statistic: 

17.52 on 3 and 10 DF; the p-value: 0.0002627.  

 

As a result of the investigation, the fitted regression model is as follows: 
 

Y = 0.9796 + 0.4096 X1 + 0.83 X2 + 0.8163 X3. 
 

b) Test whether there is a regression relation between sales and the 

three predictor variables; use the  = .05 significance level.  

Chose a model using the R command step(): 
 

> step(lm_Result) 

Start:  AIC = 7.26.  

CosmeticsSales$Y ~ CosmeticsSales$X1 + CosmeticsSales$X2 + 

+ CosmeticsSales$X3.  
 

Result: 

  Df Sum of Sq RSS AIC 

 CosmeticsSales$x1 1 0.0936 13.3699 5.3553 

 CosmeticsSales$x2 1 0.3742 13.6505 5.6460 

 CosmeticsSales$x3 1 5.1524 18.4287 9.8479 
 

Step:  AIC = 5.36. 
 

CosmeticsSales$Y ~ CosmeticsSales$X2 + CosmeticsSales$X3 
 

  Df Sum of Sq RSS AIC 

 CosmeticsSales$x3 1 5.065 18.434 7.852 

 CosmeticsSales$x2 1 52.989 66.359 25.784 
 

The call function: 

lm(formula = CosmeticsSales$Y ~ CosmeticsSales$X2 + CosmeticsSales$X3). 
 

The coefficients: 

 (Intercept) CosmeticsSales$X2 CosmeticsSales$X3   

 1.0690 1.2419 0.7978   
 

The inference: based on the upper result, the final model obtained is a 

two-variable model: 
 

Y = 1.0690 + 1.2419X2 + 0.7978X3. 
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c) Test each of the regression coefficients k (k = 1, 2, 3) individually 

whether or not k  = 0, use  = .05 each time. Do the conclusions of these 

tests correspond to those obtained in part b? 

Occasionally an experimenter might suspect that a particular predictor 

variable is not really very useful. To decide whether or not this is the case, we 

test the null hypothesis that the coefficient for this variable is 0. That is, we test: 
 

Test if 1 = 0: 
 

> summary(lm(formula = CosmeticsSales$Y ~ CosmeticsSales$X1 )) 
 

The call function: 
 

lm(formula = CosmeticsSales$Y ~ CosmeticsSales$X1). 
 

The residuals: 

 Min 1Q Median 3Q Max  

 -1.6940 -1.1413 0.1314 0.7602 2.2192  
 

The coefficients: 

 Estimate  Std. Error  t-value  Pr(>|t|)     

(Intercept) 3.9663 0.9292 4.268 0.00109   

CosmeticsSales$X1 1.3099 0.2101 6.236 4.34e-05  
 

The results: 

the residual standard error: 1.278 on 12 degrees of freedom; 

the multiple R-Squared: 0.7642; the adjusted R-squared: 0.7445;  

F-statistic: 38.89 on 1 and 12 DF; the p-value: 4.343e-05. 

The inference: based on the upper testing result, pt = 0.0000434, it is 

much smaller than 0.05/2, so this hypothesis is rejected. 

The predictor variable X1 is needed in the model that contains the other 

predictor variables. 

Test if 2 = 0. 
 

> summary(lm(formula = CosmeticsSales$y ~ CosmeticsSales$x2 )) 
 

The call function: 
 

lm(formula = CosmeticsSales$Y ~ CosmeticsSales$X2). 
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The residuals: 

 Min 1Q Median 3Q Max  

 -2.0523 -0.9807 0.0863 0.8561 2.0887  
 

The coefficients: 

  Estimate Std. Error t-value  Pr(>|t|)     

(Intercept) 3.9488 0.8970 4.402  0.000862  

CosmeticsSales$x 2 1.3327 0.2055 6.487 2.99e-05  
 

The results: 

the residual standard error: 1.239 on 12 degrees of freedom; 

the multiple R-squared: 0.7781; the adjusted R-squared: 0.7596;  

F-statistic: 42.08 on 1 and 12 DF; the p-value: 2.994e-05. 

The inference: based on the upper testing result, pt = 0.00002.99, it is 

smaller than .05/2, so the hypothesis is rejected.  

The conclusion: the predictor variable X2 is useful in predicting the value 

of the response. 

Test if 3 = 0: 
 

> summary(lm(formula = CosmeticsSales$Y ~ CosmeticsSales$X3)) 
 

The call function: 
 

lm(formula = CosmeticsSales$Y ~ CosmeticsSales$X3). 
 

The residuals: 

 Min 1Q Median 3Q Max  

 -3.1033 -1.4112 -0.2792 0.4594 4.3331  
 

The coefficients: 

 Estimate  Std. Error  t-value  Pr(>|t|) 

(Intercept) 3.622 3.357 1.079 0.302 

CosmeticsSales$X3 1.408 0.810 1.739 0.108 
 

The results: 

the residual standard error: 2.352 on 12 degrees of freedom; 

the multiple R-squared: 0.2012; the adjusted R-squared: 0.1346;  

F-statistic: 3.023 on 1 and 12 DF; the p-value: 0.1077. 

The inference: we get the p-value from this result: pt = 0.108, it is 

greater than 0.05/2, so we cannot reject this hypothesis. 
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The conclusion: the predictor variable X3 is not useful in predicting the 

value of the response Y. It is not needed in the model that contains the other 

predictor variables. 

 

d) Obtain the correlation matrix of the X variables. Create the data frame 

for the variables: 
 

>Cosmetics = data.frame(X1 = CosmeticsSales$X1, X2 = CosmeticsSales$X2, 

X3 = CosmeticsSales$X3) 
 

Use the function cor() (correlation) to obtain the correlation matrix of the 

X variables: 
 

> cor(Cosmetics) 

  X1 X2 X3 

 X1 1.0000000 0.9922085 0.2143812 

 X2 0.9922085 1.0000000 0.2365410 

 X3 0.2143812 0.2365410 1.0000000. 

 

6. Power analysis 

 

First, the definition of power: it is the probability of detecting a specified 

effect at a specified significance level. Now this specified effect refers to the 

effect size which can be the result of an experimental manipulation or the 

strength of a relationship between 2 variables. And this effect size is "specified" 

because prior to the power analysis we should have an idea of the size of the 

effect we expect to see. The "probability of detecting" a bit refers to the ability 

of a test to detect an effect of a specified size. The recommended power is 0.8 

which means we have an 80 % chance of detecting an effect if one truly exists. 

The main output of a power analysis is the estimation of a sufficient 

sample size. This is of pivotal importance of course. If our sample is too big, it 

is a waste of resources; if it is too small, we may miss the effect (p > 0.05) 

which would also mean a waste of resources.  

From a more practical point of view we need to justify our sample size 

which we can do through a power analysis. Finally, it is all about the ethics of 

research, which is encapsulated in the Home office's 3 R: Replacement, 

Refinement and Reduction.  
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The latter in particular relates directly to power calculation as it refers to 

the methods which minimize animal use and enable the researcher to obtain 

comparable levels of information from fewer animals' (NC3Rs website). 

When should we run your power analysis? It depends of what we expect 

from it: the most common output being the sample size, we should run it before 

doing the actual experiment (a priori analysis). The correct sequence from 

hypothesis to results should be: 
 

Hypothesis 

 

Experimental design 

 

Choice of a Statistical test 
 

Power analysis 

 

Sample size 

 

Experiment(s) 

 

Statistical analysis of the results 
 

The power analysis depends on the relationship between 6 variables: 

the effect size of biological interest, the standard deviation, the significance 

level, the desired power, the sample size and the alternative hypothesis.  

The significance level is about the p-value, it is generally agreed to be   

5 % and we will come back to it later. The desired power, as mentioned 

earlier, is usually 80 %. The alternative hypothesis is about choosing between 

one and 2-sided tests, it is a technical thing and we will come back to it later 

as well. So we are left with the 3 variables on which we have pretty much no 

control or about which we cannot decide arbitrarily: the effect size, the sample 

size and the standard deviation. To help understand what they are and how 

much they are connected, here is an example. 

Let's make it simple, say we are studying a gene which is expressed in 

the brain and we are using a mouse model. Our hypothesis is that knocking 

out (KO) that gene will affect the mouse's behavior. The next step is to design 

the experiment. We are going to create a KO mouse in which gene A is 

inoperative and we are going to compare WT (wild type) and KO mice's 

behavior through a set of tasks.  
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Let's say that the output of one of these tasks is a quantitative variable, 

the time taken by the mouse to achieve one task for example. Now we need 

to translate the hypothesis for this particular task into a statistical question. 

The hypothesis is that knocking out gene A will affect KO mice behavior 

which can be quantified by a change in the time taken to achieve the task.  

Statistically we need to know: what type of data we are going to collect 

(time), which test we are going to use to compare the 2 genotypes and how 

many mice we will need. When thinking about the sample size, it is very 

important to consider the difference between technical and biological replicates. 

Technical replicates involve taking several samples from one tube and 

analyzing them across multiple conditions. Biological replicates are different 

samples measured across multiple conditions. 

First, the sample size, the name itself is self-explanatory. The aim of a 

power analysis is usually to find the appropriate sample size as in the one 

which will allow us to detect a specified effect. This effect, also called effect 

size of biological interest, can only be determined scientifically not statistically. 

It is either a difference that would be meaningful biologically, like an increase/ 

decrease of 10 % or 20 % for a particular variable, or what we expect to get 

based on preliminary data. The larger the effect size, the smaller the 

experiment will need to be to detect it. 

The Standard Deviation (SD) is basically the noise in our data, the 

variability we observe between our values. This we get ideally from a pilot 

study or from previous experiments or even the literature. 

Now going back to the effect size, there are actually 2 different ones: 

the absolute one which is basically the difference between the mean value of, 

say, our control group and the one of our treatment group, and the relative 

one, also referred to as Cohen's d. This one is the more useful and more 

widely used one as it accounts for the variability in our data. 

Cohen's d: 
 

 

 

The significance level refers to the famous p-value which, for a test to 

be significant, should be below 0.05 (the 5 % threshold). Going back to our 

experiment about finding out more on gene A, we would define the p-value as 

the probability that a difference as big as the one observed between the WT 

and the KO could be found even if the knock-out of gene A does not affect 

the mouse's behavior.  
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Basically it means that if we find a significant difference (p < 0.05) 

between our 2 groups of mice, so corresponding to the effect size of biological 

interest, there is less than 5 % chance that we would have been able to observe 

it if the knocking out of gene A did not affect the behavior of the mouse. 

The last variable is the so-called alternative hypothesis: a one- or two-

sided test. This refers to the distribution of our variable: are we going to look at 

one side or at the two sides of it. In other words, and again going back to our 

experiment, do we want to answer the question: does it take longer to KO mice 

to achieve the task or do we simply want to know if there is a difference at all.  

Most of the time, in bench science, we go for the second question, even 

though we might think of one direction more than the other. We don't have 

enough evidence to choose to look only at one side of the distribution. It is 

pretty much only in clinical trials that people go for one-sided tests. They have 

already tested a particular drug for example in many systems/species so they 

have plenty of evidence about the effect of the drug.  

Finally, it is 2 times easier to reach significance with a one-side test 

than with a two-side one so a reviewer will always be suspicious if we go for 

the first one and if he asked for justification, we'd better have one!  

The basic idea behind the power analysis is that if we fix any five of the 

variables, a mathematical relationship can be used to estimate the sixth. So 

going back one more time to our example, running the power analysis, our 

question can be: What sample size do I need to have an 80 % probability 

(power) to detect an average 5 minutes difference (effect size and standard 

deviation) at a 5 % significance level using a two-sided test? The variables are 

all linked and will vary as shown in the diagram (Fig. 6.1). 
 

 
 

Fig. 6.1. The power of the t-test diagram. 

 

Now here is the good news, there are packages that can do the power 

analysis for us, providing of course we have some prior knowledge of the key 
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parameters. Mostly we need to have some idea of the difference we are 

expecting to see or that would make sense, together with some information 

on the standard deviation.  

About power analysis, the important message is: after we have designed 

your experiment, run a power analysis to estimate the appropriate sample 

size that will allow us to do good and ethical science. 

 

7. Qualitative data 

 

Packages needed for the course can be downloaded by the following 

command: 
 

>install.packages(c("beanplot","gmodels","plotrix","car","pastecs","reshape2")) 
 

Let's talk about the important stuff: your data. The first thing you need to 

do good stats is to know your data inside out. They are generally organized into 

variables, which can be divided into 2 categories: qualitative and quantitative 

and in this chapter we will only look at the former. 

Qualitative data are non-numerical data and the values taken can be 

names (also nominal data, e.g. causes of death in a hospital). The values can 

also be numbers but not numerical (e.g. an experiment number is a numerical 

label but not a unit of measurement). A qualitative variable with intrinsic order 

in their categories is ordinal. Finally, there is the particular case of qualitative 

variable with only 2 categories, it is then said to be binary or dichotomous 

(e.g. alive/dead or male/female). 

We are going to use an example to go through the analysis and the 

plotting of categorical data. 

Example 7.1. (File: cats.dat, for example.)   

A researcher is interested in whether cats could be trained to line dance. 

He tries to train them to dance by giving them either food or affection as a 

reward (training) for dance-like behavior. 

At the end of the week a note is made of which animal could line dance 

and which could not (dance). All the variables are dummy variables (categorical). 

The pivotal question is: Is there an effect of training on cats' ability to learn 

to line dance? You have already designed your experiment and chosen your 

statistical test: it will be a Fisher's exact test (or a Chi-square test) and the 

power analysis with qualitative data. 
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The next step is to run a power analysis. In an ideal world, you would 

have run a pilot study to get some idea of the type of effect size you are 

expecting to see. Let's start with this ideal situation. Let's say, in your pilot study, 

you found that 30 % of the cats did line dance after received affection and 70 % 

did so after received food. 

So we want to compare 2 proportions (0.3 and 0.7), we will be using the 

function power.prop.test() from R: 
 

> power.prop.test(p1 = .3, p2 = .7, power = .8, sig.level = 0.05). 
 

R tells us that we need 2 samples of 23 cats to reach a power of 80 %. 

In other words: if we want to be at least 80 % confident to spot a reward 

effect, if indeed there is one, we will need about 46 cats altogether.  

Next, the experiment is run and the data collected: 
 

cats.data<-read.table("cats.dat", sep = "\t",header = T). 
 

It is always worth having a quick look at the data: 
 

> head(cats) 

> View(cats) 
 

The next step, plotting the data: 
 

> plot(cats.data$Training, cats.data$Dance, xlab = "Training", ylab = "Dance") 
 

The result of applying this function is presented in Fig. 7.1. 

The categorical data are sometimes best presented as contingency tables: 
 

> table(cats.data) 
 

The result: 
 

 
 

Percentages can be more informative than raw data. The second line 

gives the values as percentage integers: 
 

 > contingency.table <- table(cats.data) 

 > contingency.table100<-prop.table(contingency.table,1) 

 > contingency.table100<-round(contingency.table100*100) 

 > contingency.table100 
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Fig. 7.1. The initial categorical data 

 

The result: 
 

 
 

Then we can plot the data as percentage/proportion: 
 

> plot(contingency.table100, col=c("white","darkgrey"),cex.axis=1) 
 

The result of applying this function is presented in Fig. 7.2. 

As mentioned before, to analyze such data we need to use a Fisher's 

exact test but we could also use a Chi2 ( 2) test. 

Both tests will give us the sameish p-value for big samples but for small 

samples the difference can be more important and the p-value given by Fisher's 

exact test is more accurate. Having said that, the calculation of the Fisher's 

exact test is quite complex whereas the one for 2 is quite easy so only the 

calculation of the latter is going to be presented here. Also, the Fisher's test is 

often only available for 2x2 tables, so in a way the χ2 is more general.  
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Fig. 7.2. The data as percentage/proportion 

 

For both tests, the idea is the same: how different are the observed 

data from what we would have expected to see by chance i.e. if there were 

no association between the 2 variables. Or, looking at the table we may also 

ask: knowing that 76 of the 200 cats did dance and that 162 of them received 

affection, what is the probability that those 76 dancers would be so unevenly 

distributed between the 2 types of reward?   

 

8. The null hypothesis and the error types 

 

The null hypothesis (H0) corresponds to the absence of effect (e.g. the 

animals rewarded by food are as likely to line dance as the ones rewarded by 

affection) and the aim of a statistical test is to accept or to reject H0.  

As mentioned earlier, traditionally, a test or a difference are said to be 

significant if the probability of Type I error is: α  0.05 (max α = 1). It means 

that the level of uncertainty of a test usually accepted is 5 %.  

It also means that there is a probability of 5 % that we may be wrong 

when we say that our two means are different, for instance, or we can say 

that when we see an effect, we want to be at least 95 % confident that 

something is significantly happening.  
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Summing: if our p-value is between 5 % and 10 % (0.05 and 0.10), one 

would not reject it too fast. 

It is often worth putting this result into perspective and asking ourselves 

a few questions like:  

What does the literature say about what I am looking at?  

What if I had a bigger sample? 

Have I run other tests on similar data and were they significant or not?  

The interpretation of a border line result can be difficult, so it is important 

to look at the whole picture. 

The specificity and the sensitivity of a test are closely related to Type I 

and Type II errors. 

Specificity = Number of True Negatives / (Number of False Positives + 

+ Number of True Negatives).  A test with a high specificity has a low Type I 

error rate. 

Sensitivity = Number of True Positives / (Number of False Negatives + 

+ Number of True Positives). A test with a high sensitivity has a low Type II 

error rate. 

 

9. The chi-squared test 

 

It could be either: A) a one-way   test, which is basically a test that 

compares the observed frequency of a variable in a single group with what 

would be the expected by chance or B) a two-way   test, the most widely 

used, in which the observed frequencies for two or more groups are compared 

with expected frequencies by chance. In other words, in this case, the  tells 

you whether or not there is an association between two categorical variables. 

An important thing to know about the , and for the Fisher's exact test for 

that matter, is that it does not tell us anything about causality; it is simply 

measuring the strength of the association between two variables and it is our 

knowledge of the biological system we are studying which will help us to interpret 

the result. Hence, we generally have an idea of which variable is acting the other.  

The  value is calculated using the formula below: 
 

 

 

http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
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The observed frequencies are the ones we measured, the values that 

are in our table. Now, the expected ones are calculated this way: 
 

Expected frequency = (row total)*(column total)/grand total. 
 

So, for example: the expected frequency of cats that would line dance 

after having received food as reward is: 
 

(76*38)/200 = 14.44. 
 

We can also think in terms of probabilities: 

 probability of line dancing:  38/200, 

 probability of receiving food: 76/200. 
 

If the two events are independent, the probability of them occurring at 

the same time (the expected frequency) will be: 38/200*76/200 = 0.072 and 

7.2 % of 200 is 14.4. 

Intuitively, one can see that we are kind of looking for 50/50 (random 

output) results but accounting for the counts we have. If we work out the values 

for all the cells, we get the following. 

To run a  analysis, we are going to use the chisq.test() function. Now, 

if we use the default version, R will give us the p-value with Yates continuity 

correction. All corrections for statistical tests work the same way: they increase 

the p-value. The reason is that if we are applying a correction, it is because we 

are using a test on data that do not meet the assumptions for it. Misusing a 

statistical test means that the output (i.e. the p-value) should not be trusted and 

as a consequence it is very likely that there is an increase of the probability of 

making the Type I error. So the solution is to increase the p-value, hence 

making it more difficult to reach significance thus reducing the probability of 

making the Type I error. 

There is only one assumption that we have to be careful about when we 

run a : with 2x2 contingency tables we should not have cells with an 

expected count below 5 as if it is the case, it is likely that the test is not accurate 

(for larger tables, all expected counts should be greater than 1 and no more 

than 20 % of expected counts should be less than 5).  

If we remember the s formula, the calculation gives us an estimation 

of the difference between our data and what we would have obtained if there 

was no association between our variables. Clearly, the bigger the value of the 

, the bigger the difference between observed and expected frequencies and 

the more likely the difference is to be significant. 
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Now with a 2x2 table, the way to go is usually a Fisher's exact test:  
 

> fisher.test(). 
 

As we can see here, the p-values vary slightly between the two-sided 

tests (p = 1.31e-06 vs p = 4.77e-07) though the conclusion remains the same: 

cats only care about food. Though the samples are not very big here, the 

assumption for the  is met so you can choose either test. 

 

10. Quantitative data 

 

Packages needed for this chapter: plotrix, car, pastecs, beanplot, and 

reshape2. 

When it comes to quantitative data, more tests are available but 

assumptions must be met before applying them. In fact, there are two types 

of statistical tests: parametric and non-parametric ones. Parametric tests 

have four assumptions that must be met for the tests to be accurate. Non-

parametric tests are based on ranks and they make few or no assumptions 

about population parameters like normality (e.g. Mann-Whitney test). 

 

10.1. Descriptive statistics 

 

The median: The median is the value exactly in the middle of an ordered 

set of numbers. 
 

Example 1: 18 27 34 52 54 59 61 68 78 82 85 87 91 93 100, Median = 68 

Example 2: 18 27 27 34 52 52 59 61 68 68 85 85 85 90, Median = 60 

 

10.2. The mean 

 

On average, µ = average of all values in a column. It can be considered 

as a model because it summaries the data. 

Example 10.1. The number of friends of each member of a group of 5 

lecturers: 1, 2, 3, 3 and 4. Mean: (1+2+3+3+4)/5 = 2.6 friends per lecturer: 

clearly a hypothetical value! 

Now, if the values were: 1, 1, 1, 1 and 9 the mean would also be 2.6 but 

clearly it would not give an accurate picture of the data. So, how can we know 

that it is an accurate model? We look at the difference between the real data 
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and our model in Fig. 10.1. To do so, we calculate the difference between the 

real data and the model created and we make the sum so that we get the 

total error (or sum of differences). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.1. The difference between the real data and the model 
 

The difference is: 
 

= (-1.6) + (-0.6) + (0.4) + (0.4) + (1.4) = 0. 
 

And we get no errors! Of course, positive and negative differences cancel 

each other out. So to avoid the problem of the direction of the error, we can 

square the differences and instead of the sum of errors, we get the Sum of 

Squared errors (SS). In our example: 
 

SS = (-1.6)2 + (-0.6)2 + (0.4)2 + (0.4)2 + (1.4)2 = 5.20. 

 

10.3. The variance 
 

This SS gives a good measure of the accuracy of the model but it is 

dependent upon the amount of data: the more data, the higher the SS. The 

solution is to divide the SS by the number of observations (N). As we are interested 

in measuring the error in the sample, to estimate the one in the population, we 

divide the SS by N-1 instead of N and we get the variance (S2) = SS/(N-1). In 

our example: Variance (S2) = 5.20 / 4 = 1.3. Why N-1 instead of N? 

If we take a sample of 4 scores in a population, they are free to vary but 

if we use this sample to calculate the variance, we have to use the mean of 
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the sample as an estimate of the mean of the population. To do that, we have 

to hold one parameter constant. 

Example 10.2. The mean of the sample is 10. We assume that the 

mean of the population from which the sample has been collected is also 10. 

If we want to calculate the variance, we must keep this value constant which 

means that the 4 scores cannot vary freely. If the values are 9, 8, 11 and 12 

(mean = 10) and if we change 3 of these values to 7, 15 and 8, then the final 

value must be 10 to keep the mean constant. 

If we hold 1 parameter constant, we have to use N-1 instead of N. It is 

the idea behind the degree of freedom: one less than the sample size. 

 

10.4. The standard deviation (S.D.) 

 

The problem with the variance is that it is measured in squared units, 

which is not very nice to manipulate. So for more convenience, the square 

root of the variance is taken to obtain a measure in the same unit as the 

original measure: the standard deviation: S.D. = √SS/(N-1) = √(S2), in our 

example: S.D. =  √(1.3) = 1.14. So you would present your mean as follows: 

µ = 2.6  1.14 friends. 

The standard deviation is a measure of how well the mean represents 

the data or how much our data are scattered around the mean. In Fig. 10.2 

the difference between the low and high standard deviations is shown. Small 

S.D.: data close to the mean: mean is a good fit of the data (graph on the 

left). Large S.D.: data distant from the mean: mean is not an accurate 

representation (graph on the right) 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 10.2. The low and high standard deviations 
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10.5. Standard deviation vs standard error 

 

Many are confused about the difference between the standard deviation 

(S.D.) and the standard error of the mean (S.E.M. = S.D. / √N). This difference 

is represented in Fig. 10.3. 

The S.D. (the graph on the left) quantifies the scatter of the data and 

increasing the size of the sample does not decrease the scatter (above a 

certain threshold). 

The S.E.M. (the graph on the right) quantifies how accurately we know 

the true population mean, it's a measure of how much we expect the sample 

means to vary. So the S.E.M. gets smaller as our samples get larger: the mean 

of a large sample is likely to be closer to the true mean than is the mean of a 

small sample.  

A small S.E.M. means that most sample means are similar to the 

population mean and so our sample is likely to be an accurate representation 

of the population. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 10.3. The difference between the S.D. (left) and S.E.M. (right) 

 

10.6. Which error measure to choose? 

 

The choice depends, first of all, on the subject researched. If the scatter 

is caused by biological variability, it is important to show the variation. So it is 

more appropriate to report the S.D. rather than the S.E.M. Even better, we 
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can show in a graph all data points, or perhaps report the largest and 

smallest value. 

If we are using an in vitro system with theoretically very little biological 

variability, the scatter can only result from experimental imprecision (no 

biological meaning). It is more sensible then to report the S.E.M. since the 

S.D. is less useful here. The S.E.M. gives the readers a sense of how well 

we have determined the mean. 

Choosing between S.D. and S.E.M. also depends on what we want to 

show. If we just want to present our data on a descriptive purpose, then we 

go for the SD. If we want the reader to be able to infer an idea of significance, 

then you should go for the SEM or the confidence interval (CI). We will go a 

bit more in details later. 

 

10.7. The confidence interval 

 

The confidence interval quantifies the uncertainty in measurement. The 

mean we calculate from our sample of data points depends on which values 

we happened to sample. Therefore, the mean we calculate is unlikely to equal 

the true population mean. The size of the likely discrepancy depends on the 

variability of the values and the sample size. If we combine those together, we 

can calculate a 95 % confidence interval, which is a range of values. If the 

population is normal (or nearly so), there is a 95 % chance that the confidence 

interval contains the true population mean (pop.mean). For example, 95 % of 

observations in a normal distribution lie within pop.mean  1.96*S.E. 

One other way to look at error bars is shown in Fig. 10.4 and Table 10.1. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 10.4. The bar-representation of data scattering around the mean 
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Table 10.1 
 

The differences between the S.D. and the S.E.M. 
 

Error bars Type Description 

Standard deviation (S.D.) Descriptive 

Typical or average difference 

between the data points and 

their mean 

Standard error (S.E.M.) Inferential 

A measure of how variable 

the mean will be if you repeat 

the whole study many times 

Confidence interval,  

usually 95 %  
Inferential 

A range of values contained in 

the 95 % CI around the mean 

 

If we want to compare experimental results, it could be more appropriate 

to show inferential error bars such as S.E. or CI rather than S.D. If we want to 

describe our sample, for instance its normality, then the S.D. would be the one 

to choose. 

However, if n is very small (for example n = 3), rather than showing 

error bars and statistics, it is better to simply plot the individual data points as 

it is sown in Fig. 10.5 and 10.6. 
 

 
 

Fig. 10.5. The SE-bars 

We can estimate 
statistical significance 
using the overlap rule 

for SE bars. 
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Fig. 10.6. The CI-bars 

 

The assumptions of parametric data can be represented graphically 

(Fig. 10.7). 
 

 

Fig. 10.7. Graphical representation of data scattering 
 

 When we are dealing with quantitative data, the first thing we should 

look at is how they are distributed, how they look like. The distribution of our 

data will tell us if there is something wrong in the way we collected them or 

enter them and it will also tell us what kind of test we can apply to make them 

say something. 

The t-test, analysis of variance and correlation tests, belongs to the 

family of parametric tests and to be able to use them, our data must comply 

with the following four assumptions. 

1. The data have to be normally distributed (normal shape, bell shape, 

Gaussian shape).  

In the same way, you can 
estimate statistical 

significance using the 
overlap rule for 95 % CI 

bars. 
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An example of normally distributed data is presented in Fig. 10.8. 
 

 
 

Fig. 10.8. The theoretical pdf and the histogram of the normally 

distributed data 

 

The real data are not always distributed normally. There are two main types 

of departure from normality: skewness (the lack of symmetry of a distribution) and 

kurtosis (the measure of the degree of "peakedness" in the distribution). The two 

distributions in Fig. 10.10 have the same variance, approximately the same skew, 

but differ markedly in kurtosis. as shown in Fig. 10.9 and 10.10.  
 

 
Fig. 10.9. Asymmetry in the data distribution 

 

 

Fig. 10.10. "Peakedness" in the data distribution 
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2. Homogeneity in variance: the variance should not change systematically 

throughout the data.  

3. Interval data: the distance between the points of the scale should be 

equal at all parts along the scale. 

4. Independence: data from different subjects are independent so that 

values corresponding to one subject do not influence the values corresponding 

to another subject. Basically, it means one measure per subject. There are 

specific designs for repeated measure experiments. 

How can we check that our data are parametrically normal? Let's try to 

do it through an example. 

 

Example. We want to know if male coyotes are bigger than female coyotes. 

Of course, before doing anything else, we design our experiment and we are 

told that to compare two samples we need to apply a t-test (we will explain this 

test later). So basically we are going to catch coyotes and hopefully we will 

manage to catch males and females. Now, the tricky question here is how 

many coyotes do we need? 

 

11. The power analysis with a t-test 

 

Let's say, we don't have data from a pilot study but we have found 

some information in the literature. In a study run in similar conditions as in the 

one we intend to run, male coyotes (n = 20) were found to measure on 

average: 92cm  7cm (SD). We expect a 5 % difference between genders 

with a similar variability in the female sample. 

The R-function in this case will be: 
 

> power.t.test(n = , d = , sig.level = , power = , type = c("two.sample", 

"one.sample", "paired"))   
 

 

 

with d being the Cohen's distance, M1 and M2, the corresponding means and 

s1 and s2 standard deviations. In R it will be: 
 

 numerator <- abs(mean1-mean2) 

 denominator<- sqrt(((s1*s1)+(s2*s2))/2) 
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 mean1<-92 

 mean2<-87.4 (5% less than 92cm) 

 s1<-7 

 s2<-7 

 d<- numerator/ denominator 

 d. 
 

You should further get: 
 

[1]  0.6571429. 
 

So now: 
 

> power.t.test(d = d, sig.level = 0.05, power = 0.8) 
 

The default Type is two.sample2, so there is no need to specify it. Then 

we obtain: 
 

 <- n = 37.33624 

 <- delta = 0.6571429 

 <- sd = 1 

 <- sig.level = 0.05 

 <- power = 0.8 

 <- alternative = two.sided. 
 

Note: n is the number in each group. We obtain the needed sample size 

of n = 76 (2*38). 

Once the data are collected, we need to check it for normality. Though 

normality tests are good, the best way to get a really good idea of what is 

going on is to plot our data.  

When it comes to normality, there are three ways to plot our data:    

the box plot, the scatter plot and the histogram. This has been done in R in    

Fig. 11.1 – 11.5. To get the data in R:  
 

coyote<-read.csv("coyote.csv", header = TRUE) 

View(coyote) or head(coyote). 
 

Now let's start with the stripchart() function:  
 

stripchart(coyote$length~coyote$gender, vertical = TRUE, method = "jitter", 

las = 1, ylab = "Lengths", pch = 16, col = c ("darkorange", "purple"), cex = 1.5, 

at = c(1.2,1.8)). 
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Fig. 11.1. Scatter plots 

 

Now you may want to improve this graph by adding the group means 

(Fig. 11.2).  

Another way to explore the data is the boxplot (Fig. 11.3): 
 

length.means <- tapply(coyote$length,coyote$gender,mean)  

loc.strip<- c(1.2,1.8) 

segments(loc.strip-0.15, length.means, loc.strip+0.15, length.means, col = 

"black", lwd = 3) 

boxplot(coyote$length~coyote$gender, col = c("orange", "purple")). 
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Fig. 11.2. Adding the groups means 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 11.3. Box plots 

 

The anatomy of a boxplot is explained in the graph below. It is very 

important that you know how a box plot is built. It is rather simple and it will 

allow us to get a pretty good idea about the distribution of your data at a 

glance.  
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If the distribution is normal-ish then the box plot should be symmetrical-

ish and if both (like in our case) are of the same size-ish, then we can be 

confident that the variances are about the same. 

 
 

Fig. 11.4. Confidence intervals on box plots 

 

Regarding the outliers, there is no really right or wrong attitude. If there 

is a technical issue or an experimental problem, you should remove it of 

course but if there is nothing obvious, it is up to you. I would always 

recommend keeping outliers if we can; we can run the analysis with and 

without it for instance and see what effect it has on the p-value. If the 

outcome is still consistent with our hypothesis, then we should keep it. If not, 

then it is between you and your conscience. 

In Fig. 11.5, we can see the relationship between the box plot and the 

histogram. 

Beanplots can be more informative than a boxplot in terms of "hidden" 

distribution especially with big datasets as we can see in Fig 11.6, but they do 

not identify outliers.  
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Fig. 11.5. The relationship between the box plot and the histogram 

 

 
 

Fig. 11.6. Beanplots 

http://upload.wikimedia.org/wikipedia/commons/8/89/Boxplot_vs_PDF.png
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Really, the beanplots look quite informative. More detailed graphics is 

given in Fig. 11.7.  
 

> beanplot(coyote$length~coyote$gender, las=1, 

ylab="Length (cm)")  ## beanplot package ## 

 

 
 

Fig. 11.7. Beanplots in details 

 

11.1. Histograms in R 

 

The histograms in R can be built using the hist() function (Fig. 11.8): 
 

> par(mfrow=c(1,2)) 

>hist(coyote[coyote$gender == "male",]$length, main = "Male", 

> xlab = "Length", col = "lightblue") 

>hist(coyote[coyote$gender == "female",]$length, main = "Female", 

> xlab = "Length", col = "pink") 
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Fig. 11.8. Histograms in R 

 

So from the graphs we have plotted, we can say that the first and second 

assumptions are likely to be met: the data seem normal enough (symmetry of 

the graphs) and the variability seems comparable between the groups (spread 

of the data). Frequently preference goes to the box plot as it tells you in one go 

anything you need to know: where you are with the first two assumptions and it 

shows you the outliers. 

Still we may come across cases where it is not that obvious so you can 

ask R to test for normality (Shapiro – Wilk test or D'Agostino and Pearson 

tests) and homogeneity of variance (Levene test). Here we are going to use 

two new functions: stat.desc(), which gives a statistical summary of the data, 

and the test for normality (Shapiro – Wilk test ). Also we can use the tapply() 

function, which allow us to do it for males and females separately in one go: 
 

> tapply(coyote$length,coyote$gender, stat.desc, basic = F, desc = F, norm = T) 

## pastecs package ##. 
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There is no significant departure from normality for females (p = 0.316) 

or males (p = 0.819). 

That was the first assumption. Now we can check the second assumption 

(homogeneity of variances) using the Levene test. The second assumption: 

 

> leveneTest(coyote$length, coyote$gender, center = mean) ## car package ##. 

 

So good again but not surprising news: the variances of the two 

genders do not differ significantly (p = 0.698). 

Don't be too quick to switch to nonparametric tests. While they do not 

assume Gaussian distributions, these tests do assume that the shape of the 

data distribution is the same in each group. So if your groups have very 

different standard deviations and so are not appropriate for a parametric test, 

they should not be analyzed for its non-parametric equivalent either. However 

parametric tests like ANOVA and t-tests are rather robust, especially when 

the samples are not too small so you can get away with small departure from 

normality and small differences in variances. Often the best approach is to 

transform the data using logarithms or reciprocals with restoring equal 

variance.  

Finally we may want to represent the data as a classical bar chart. To 

achieve that, we can type the lines below: 

 

bar.length<-barplot(length.means, col = c("pink", "lightblue"), ylim = c(50,100), 

beside = TRUE, xlim = c(0,1), width = 0.3, ylab = "Mean length", las = 1, xpd 

= FALSE, las = 1)  

 

 ## plotrix package ## 

 length.se<-tapply(coyote$length,coyote$gender,std.error) 

 

Now, to plot the error bars, we are going to use arrow(). We need to 

specify the coordinates (x, y). barplot () returns the values of the center of the 

bars as we can see in Fig. 11.9: 

 

>arrows(x0 = bar.length, y0 = length.means-length.se, x1 = bar.length, y1 = 

length.means+length.se, length = 0.3, angle = 90, code = 3) 
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Fig. 11.9. Error bars 

 

12. The comparison of more than two means: 

analysis of variance 

 

When we want to compare more than two means (e.g. more than two 

groups), we cannot run several t-tests because it increases the "familywise 

error rate", which is the error rate across tests conducted on the same 

experimental data. 

 

Example: if we want to compare three groups (1, 2 and 3) and we carry 

out 3 t-tests (groups 1–2, 1–3 and 2–3), each with an arbitrary 5 % level of 

significance, the probability of not making the Type I error is 95 % (= 1 - 0.05). 

The three tests being independent, we can multiply the probabilities, so the 

overall probability of no Type I errors is: 0.95 * 0.95 * 0.95 = 0.857, which 

means that the probability of making at least one Type I error (to say that 

there is a difference whereas there is not) is 1 - 0.857 = 0.143 or 14.3 %. So 
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the probability has increased from 5 % to 14.3 %. If we compare 5 groups 

instead of 3, the familywise error rate is 22.6 % (= 1 - (0.95)5). 

To overcome the problem of multiple comparisons, we need to run an 

analysis of variance (ANOVA), which is an extension of the two groups' 

comparison of a t-test but with a slightly different logic. If we want to compare 

5 means, for example, we can compare each mean with another, which gives 

you 10 possible 2-group comparisons, which is quite complicated. So, the 

logic of the t-test cannot be directly transferred to the analysis of variance. 

Instead the ANOVA compares variances: if the variance amongst the 5 

means is greater than the random error variance (due to individual variability 

for instance), then the means must be more spread out than we would have 

explained by chance. 

The statistic for ANOVA is the F ratio: 

 

 

 

also: 
 

 

 

If the variance amongst sample means is greater than the error 

variance, then . In an ANOVA, we test whether F is significantly higher 

than 1 or not. 

Imagine we have a dataset of 78 data points, we advance a hypothesis that 

these points in fact belong to 5 different groups (this is our hypothetical model). 

So we arrange the data into 5 groups and run an ANOVA (Table 12.1).  
 

Table 12.1 
 

ANOVA 
 

Source of  

variation 
Sum of Squares df 

Mean 

Square 
F p-value 

Between Groups 2.665 4 0.6663 8.423 <0.0001 

Within Groups 5.775 73 0.0791 
  

Total 8.44 77 
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Let's go through the figures in Table 12.1. First, the bottom row of the 

table: total = – . 

In our case, total SS = 8.44. If we were to plot our data to represent the 

total SS, we would produce the graph shown in Fig. 12.1. So the total SS is 

the squared sum of all the differences between each data points and the 

grand mean. This is a quantification of the overall variability in our data. The 

next step is to partition this variability: how big is variability between the 

groups (explained by the model) and how big is the variability within the 

groups (random/individual/remaining variability)? 
 

 
Fig. 12.1. A scatter plot 

 

According to our hypothesis our data can be split into 5 groups because, 

for instance, the data come from 5 cell types, like in the graph in Fig. 12.2. 

So we work out the mean for each cell type and we work out the 

squared differences between each of the means and the grand mean (∑ ni 

(Meani – Grand mean)2 ). In our example (the second row of the table): 

between groups SS = 2.665 and, since we have 5 groups, there are 5 – 1 = 4 df 

and the mean SS = 2.665/4 = 0.6663.  

If you remember the formula of the variance (= SS / N - 1, with df = N - 1), 

you can see that this value quantifies the variability between the groups' 

means: it is the between-groups variance.  

There is one row left in Table 12.1, the within-groups variability. It is the 

variability within each of the five groups, so it corresponds to the difference 

between each data point and its respective group mean: within the groups the 

sum of squares = ∑ (xi - meani)
2  which in our case is equal to 5.775.  

This value can also be obtained by doing 8.44 – 2.665 = 5.775, which is 

logical since it is the amount of variability left from the total variability after the 



98 

variability explained by the model has been removed: in our example, the 5 

groups' sizes are 12, 12, 17, 17 and 17 so df =  (n – 1) = 73 (Fig. 12.2).  

 

Fig. 12.2. Five scatter groups 

 

So, the mean variability within the groups: SS = 5.775/73 = 0.0791. This 

quantifies the remaining variability, the one not explained by the model, the 

individual variability between each value and the mean of the group to which 

it belongs according to the hypothesis. From this value one can obtain what is 

often referred to as the pooled SD (= SQRT(MS (Residual or Within Group)). 

When obtained in a pilot study, this value is used in the power analysis.  

At this point, we can see that the amount of variability explained by our 

model (0.6663) is far higher than the remaining one (0.0791). 

We can work out the F-ratio: F = 0.6663 / 0.0791 = 8.423. 

The level of significance of the test is calculated by taking into account 

the F-ratio and the number of df (degree of freedom) for the numerator and 

the denominator.  

In our example, p < 0.0001, so the test is highly significant and we are 

more than 99 % confident when we say that there is a difference between the 

groups' means. This is an overall difference and even if we have an indication 

from the graph, we cannot say which mean is significantly different from 

which. 

This is because the ANOVA is an "omnibus" test: it tells us that there is 

(or not) an overall difference between our means but not exactly which means 

are significantly different from which. This is why we apply a post-hoc test. 

Post-hoc tests could be compared to t-tests but with a more stringent 

Within group variability 

Between group variability 
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approach, a lower significance threshold to correct for familywise error rate. 

We will go through post-hoc tests in more details later. 

 

Example. We want to find out if there is a significant difference in terms 

of protein expression between 5 cell types.  

First we import the dataset: 
 

> protein<-read.csv("protein.expression.csv", header = T) 
 

Then for ease of graphical representation we restructure it: 
 

 protein.stack<-melt(protein) ## reshape2 package ## 

 colnames(protein.stack)<-c("line","expression"). 
 

Than we get rid of the missing values: 
 

protein.stack.clean <- protein.stack[!is.na(protein.stack$expression),] 
 

Now we can plot the data, either as a scatterplot (Fig. 12.3) 

 
Fig. 12.3. Scatterplots for groups 

 

>stripchart(protein.stack.clean$expression~protein.stack.clean$line,vertical= 

TRUE,method="jitter",las=1,ylab="Protein Expression", pch=16, col=rainbow(5)) 
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> expression.means<- 

+ tapply(protein.stack.clean$expression,protein.stack.clean$line,mean) 
 

> loc.strip<-1:5 

> segments(loc.strip-0.15,expression.means,loc.strip+0.15, 

expression.means,  

+ col="black", lwd=3) 
 

or a boxplot (Fig. 12.4). 
 

>boxplot(protein.stack.clean$expression~protein.stack.clean$line,col=rainbow(5)). 
 

 
 

Fig. 12.4. Boxplots for groups 
 

First we need to see whether the data meet the assumptions for a 

parametric approach. Well, it does not look good: 2 out of 5 groups (C and D) 

show a significant departure from normality (we cannot use the D'Agostino test 

as R requires n  20). As for the homogeneity of variance, even before testing 

it, a look at the scatter plots and boxplots tells us that there is no way the second 

assumption is met. The data from groups C and D are quite skewed and a look 

at the raw data shows more than a 10-fold jump between values of the same 

group (e.g. in group A, value line 4 is 0.17 and value line 10 is 2.09). So, 
 

>tapply(protein.stack.clean$expression,protein.stack.clean$line,stat.desc,des

c = F, basic = F, norm = T)) ## pastecs package ##. 
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A good idea would be to log-transform the data so that the spread is 

more balanced and to check again on the assumptions. The variability seems 

to be scale related: the higher the mean, the bigger the variability. This is a 

typical case for log-transformation.  

Speaking of log-transformation, the function beanplot() has a built-in 

procedure to automatically determine whether a log transformation of the 

response axis is appropriate or not, to get rid of it, we need: log = "". In our case, 

since we are thinking log we might as well let the function choose (Fig. 12.5):  
 

> beanplot(protein.stack.clean$expression~protein.stack.clean$line, ylab = 

"Protein + Expression") ## beanplot package ##. 

 
Figure 12.5. Beanplots for groups 

 

We can actually check beforehand that a log transformation will 

stabilize your data by changing your linear y-axis to a log y-axis. To do so, 

with the stripchart for instance (Fig. 12.6), we go: 
 

>stripchart(protein.stack.clean$expression~protein.stack.clean$line,vertical = 

= TRUE, 

+ method="jitter",las=1,ylab="Protein Expression", pch=16, col=rainbow(5), 

+ log = "y") 

expression.means<- 
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> tapply(protein.stack.clean$expression,protein.stack.clean$line,mean) 

> loc.strip<-1:5 

>segments(loc.strip-0.15,expression.means,loc.strip+0.15,expression.means, 

+ col = "black", lwd = 3) 
 

 
 

Fig. 12.6. Stripcharts for groups 

 

It looks much better, so let's go for the actual log-transformation: 
 

protein.stack.clean$log10.expression<-log10(protein.stack.clean$expression) 
 

>tapply(protein.stack.clean$log10.expression,protein.stack.clean$line,stat.de

+sc,basic = F, norm = T, desc = F) 
 

OK, the situation is getting better: the first assumption is met-ish and from 

what we see when we plot the transformed data (boxplots) the homogeneity of 

variance has improved a great deal (Fig. 12.7): 
 

>boxplot(protein.stack.clean$log10.expression~protein.stack.clean$line,col = 

rainbow(5)). 
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Fig. 12.7. Boxplots for groups after data transformation 

 

One last thing before we run the ANOVA: we need to check for the 

second assumption: the homogeneity of variance. To do so, we do what we 

did before running the t-test: we run a Levene test: 
 

> leveneTest(protein.stack.clean$log10.expression,protein.stack.clean$line, 

+ center=mean) ## car package ## 
 

Now that we have sorted out the data, we can run the ANOVA: to do so, 

you go: 
 

> anova.log.protein<-aov(log10.expression~line,data = protein.stack.clean)  

+ summary(anova.log.protein). 
 

The overall p-value is significant (p = 1.78e-05) so the next thing to do is 

to choose a post-hoc test. There are 2 widely used: the Bonferroni test which is 

quite conservative so we should only choose it when we are comparing no 

more than 5 groups and the Tukey-test, which is more liberal. First let's try the 

Bonferroni test. It is built into R: 
 

> pairwise.t.test(protein.stack.clean$log10.expression, 

+ protein.stack.clean$line, p.adj = "bonf"). 
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Then Tukey: 

 

TukeyHSD(anova.log.protein,"line") 
 

Again, from Table 12.1 we can find out which pairwise comparison 

reaches significance and which does not (Fig. 12.8):  
 

>bar.expression<-barplot(expression.means, beside = TRUE, ylab = "Mean  

+ expression", ylim = c(0,3), las = 1) 

> expression.se <- tapply(protein.stack.clean$expression, 

+ protein.stack.clean$line,std.error)  

>arrows(x0 = bar.expression, y0 = expression.means-expression.se, x1 = 

bar.expression,  

> y1 = expression.means+expression.se, length = 0.2, angle = 90, code = 3) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12.8. Pairwise comparison 

 

If we want to find out about the relationship between two continuous 

variables, we can run a correlation. 

 

12.1. The correlation coefficient 

 

A correlation is a measure of a linear relationship (which can be 

expressed as straight-line graphs) between variables. The simplest way to find 
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out whether two variables are associated is to look at whether they covary. To 

do so, we combine the variance of one variable with the variance of the other: 
 

- -
  

 

A positive covariance indicates that as one variable deviates from the 

mean, the other one deviates in the same direction, in other words if one 

variable goes up, the other one goes up as well. 

The problem with the covariance is that its value depends upon the 

scale of measurement used, so we would not be able to compare covariance 

between datasets unless both data are measures in the same units. To 

standardize the covariance, it is divided by the SD of the 2 variables. It gives 

us the most widely-used correlation coefficient: the Pearson product-moment 

correlation coefficient "r": 
 

- -
  

 

Of course, you don't need to remember that formula but it is important 

that you understand what the correlation coefficient does: it measures the 

magnitude and the direction of the relationship between two variables. It is 

designed to range in value between 0.0 and 1.0 (Fig. 12.9). 
 

 
 

Fig. 12.9. Positive and negative correlations 

 

The two variables do not have to be measured in the same units but 

they have to be proportional (meaning linearly related). Apart from r, there is 
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another important coefficient:  the coefficient of determination R2: it gives the 

proportion of variance in Y that can be explained by X, in percentage. 

Finally, the assumptions for correlation (regression in general) are 

pretty much the ones we have seen before:  

Linearity: The relationship between X and the mean of Y is linear. 

Homoscedasticity: The variance of the residual is the same for any 

value of X. 

Independence: Observations are independent of each other. 

Normality: For any fixed value of X, Y is normally distributed.  

When running a regression in general and a correlation in particular, we 

need to check for problematic points. They can be:  

Outliers: an outlier is defined as an observation that has a large residual. 

In other words, the observed value for the point is very different from that 

predicted by the regression model. 

Leverage points: A leverage point is defined as an observation that 

has a value of X that is far away from the mean of X.  

Influential observations: An influential observation is defined as an 

observation that changes the slope of the line. Thus, influential points have a 

large influence on the fit of the model. One method to find influential points is 

to compare the fit of the model with and without each observation. 

The bottom line is that first we look at the outliers, once we have 

identified them, we check the influence statistics and if one or more are "out 

of line", we can then safely remove the value. 

 

Example. Graphical data mining. Input data in R: 

 

> exam.anxiety<-read.table("Exam Anxiety.dat", sep = "\t",header = T). 

 

The first thing we are going to do is to plot the data (Fig. 12.10). We will 

start with revising time vs anxiety levels. 

 

> plot(exam.anxiety$Anxiety~exam.anxiety$Revise,col=exam.anxiety$Gender, 

+ pch = 16) 

> legend("topright", title = "Gender", inset = .05, c ("Female","Male"), horiz = 

TRUE, + pch = 16, col = 1:2). 

 



107 

 
Fig. 12.10. Plotting the data 

 

By looking at the graph, one can think that something is happening 

here. To get a better idea we can add lines-of-best fit (Fig. 12.11) but to do 

that we first need to fit the model as the lines-of-best fit's coefficients are one 

of the outputs of the regression: 
 

 
Fig. 12.11. Data with the best fit lines 
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fit.male<-lm(Anxiety~Revise, data = exam.anxiety[exam.anxiety$Gender == 

"Male",]) 

fit.female<-lm(Anxiety~Revise, data = exam.anxiety[exam.anxiety$Gender == 

"Female",]) 
 

> abline((fit.male), col = "red") 

> abline((fit.female), col = "black") 
 

Now, we want to quantify the strength of the relationship between our 

two variables of interest but first we need to check on the data. 

 

12.2. Outliers and influential cases 
 

We might have noticed that one point, possibly two, is really far from the 

others. So let's check out our data and keep an eye on our misbehaving 

cases and in particular the boy (point Code 78) who spent two hours revising, 

did not feel stressed about it (Anxiety score: 10) and managed a 100 % mark 

in his exam. Then, in Fig. 12.12 we see: 
 

> par(mfrow = c(2,2) plot(fit.male) 
 

 
Figure 12.12. Identification of outliers for the boys  
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The first plot depicts residuals versus fitted values. Residuals are 

measured as follows: residual =  observed y  –  model-predicted y.  

So the further the observed y from the one predicted by the model, the 

poorer the prediction. The plot of residuals versus predicted values is useful 

for checking the assumption of linearity and homoscedasticity. If the model 

does not meet the linear model assumption, we would expect to see residuals 

that are very large (a big positive value or a big negative value).  

To assess the assumption of linearity we want to ensure that the 

residuals are not too far away from 0.  

To assess if the homoscedasticity assumption is met, we look to make 

sure that there is no pattern in the residuals and that they are equally spread 

around the y = 0 line. In our case, R identifies 3 points with high residuals, 

one of which has a really high one: point 78. 

The second plot (QQ-plot) evaluates the normality assumption. It compares 

the residuals to "ideal" normal observations. We want our observations lie well 

along the 45-degree line in the QQ-plot, which is the case here, except for point 78. 

The third plot is a scale-location plot (square rooted standardized 

residual vs predicted value). This is useful for checking the assumption of 

homoscedasticity. In this particular plot we are checking to see if there is a 

pattern in the residuals. In our case, things look OK. Point 78 is however 

away from the others. 

Finally, the fourth plot is of the "Cook's distance", which is a measure of 

the influence of each observation on the regression coefficients. The Cook's 

distance statistic is a measure, for each observation in turn, of the extent of 

change in model estimates when that particular observation is omitted. Any 

observation for which the Cook's distance is close to 1 or more (above 0.5), or 

that is substantially larger than other Cook's distances (highly influential data 

points), requires investigation. Once more, in our case, point 78 is of concern. 

Outliers may or may not be influential points. As stated before, influential 

outliers are of the greatest concern. They should never be disregarded. Careful 

scrutiny of the original data may reveal an error in data entry that can be 

corrected. They can be excluded from the final fitted model but they must be 

noted in the final report or paper. 

In our case, one points stands out in all 4 graphs: point 78, so we will 

look at the correlation with and without this value.  

Now we study the data for "female" (Fig. 12.13). We build data with the 

aid of the function plot(): 
 

> plot(fit.female) 
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Fig. 12.13. Identification of outliers for the girls 

 

For the girls, point 87 stands out though not as strikingly as point 78 for 

the boys. And it is below the threshold to be identified as an influential case 

(plos 4). We will however keep an eye on it (Fig 12.14). To get the output of 

the analysis: 

> summary(fit.male) 
 

From this output we get 4 important pieces of information. First the 

coefficients of the line of best fit: Intercept: 84.19 and slope: -0.53. So it goes: 

Anxiety = 84.19-0.53*Revise. 

We can also see that the relationship between the two variables is 

highly significant: p < 2e-16. And finally R2 = 0.3568: the model explains 

about 36 % of the variability observed in anxiety. We can get the coefficient of 

correlation by calculating the square root of R2 or with the line below if we 

want to look at the relationships between all variables. 
 

cor(exam.anxiety[exam.anxiety$Gender == "Male", c("Exam", "Anxiety", 

"Revise")]) 
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For the females: 
 

> summary(fit.female) 
 

We get as a result: Anxiety = 91.94-0.82*Revise with p < 2e-16. 

So a significant result again, with a higher intercept and a steeper slope 

as expected. And for the correlations: 
 

 > cor(exam.anxiety[exam.anxiety$Gender == "Female", 

 > c("Exam","Anxiety","Revise")]) 
 

Now what happens if we remove point 78 from the males dataset and 

rerun the analysis? 
 

> fit.male2<-lm(Anxiety~Revise, 

> data = exam.anxiety[exam.anxiety$Gender == "Male"&exam.anxiety$Code! 

= 78,]) 

> summary(fit.male2) 
 

We can notice that, without the influential outlier, the slope is steeper 

but most importantly R2 jumps from 36 % to 65 % so a much better fit. 

 

For the females: 
 

> fit.female2<-lm(Anxiety~Revise, 

> data = exam.anxiety[exam.anxiety$Gender == "Female"&exam.anxiety$Code! 

= 87,]) 

> summary(fit.female2) 
 

This model is better than the one with the outlier but the influence of 

point 87 is not as big. Keeping or removing the value is more debatable. 
 

>plot(exam.anxiety$Anxiety~exam.anxiety$Revise, col = 

exam.anxiety$Gender,pch = 16) 
 

> legend("topright", title = "Gender", inset = .05, c("Female","Male"),  

horiz = TRUE, pch = 16, col = 1:2) 
 

 > abline((fit.male), col = "red") 

 > abline((fit.female), col = "black") 

 > abline((fit.male2), col = "red", lty = 3) 

 > abline((fit.female2), col = "black", lty = 3) 
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Fig. 12.14. Trends for boys and girls after the removal of the outliers 

 

Conclusions 

 

Almost all the basic features of R have been presented in these 

guidelines. You will get to know how to solve the statistic problems with the 

statistic software package R by following the R example step by step. 

Unfortunately, there are more useful features, which have not been studied 

and mentioned here because of the time limitation of the project. Also some R 

functions were not introduced in detail due to the lack of space. You can get 

detailed explanation of the functions with the help of the help() function. But 

these introduced R functions are enough for the beginner to start using R for 

the statistics analysis. You can get more information from the books and 

publications listed in the bibliography.  
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