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Introduction

Integral is one of the basic concepts of mathematical analysis and
mathematics in general. Integral calculus studies the properties and methods
of computing indefinite and definite integrals. This branch of mathematics
is of great practical importance and is widely used in various fields of human
activity.

The purpose of the guidelines is to consider the main principles and
concepts of integral calculus and to review some basic techniques for calculating
indefinite integrals.

In the guidelines, first, the definitions of the antiderivative and indefinite
integral are given, and the principal theorems and properties of the indefinite
integral are formulated. The possibilities of the application of theorems in the
calculation and verification of integrals are discussed.

The main methods of evaluation of integrals, such as integration by
substitution or change of variables to find antiderivatives of complicated
functions are given consideration. Two ways of applying the substitution rule
are given.

An insight is taken into integration by parts with its advantages and
application possibilities. The technique of using this method and typical cases
of functions requiring integration of parts are provided.

In separate sections, the features of integration of rational, irrational and
trigonometric functions are studied.

The consideration of each topic is accompanied by a sufficient number
of examples. Finally, students are offered theoretical questions and tests for
self-assessment.

1. The basic concepts of integral calculus

Integral is one of the fundamental concepts of mathematics.
Integration is the inverse process of differentiation. It means that, given
a function f(X), we wish to find a function F(X) such that

F'(x)=f(x). 1)

Definition 1. Any function F(X) that satisfies the condition (1) is called
an antiderivative of the function f (x).
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Theorem 1. If the function is continuous over an interval, then it has
an antiderivative over this interval.

However, while we can find the derivative of any elementary function,
the problem of finding the antiderivative is much more complicated.

A first observation is that the antiderivative, if it exists, is not unique. Indeed,
suppose that the function F(X) is an antiderivative of the function f(X),

so that F'(X) = f(X). Then consider G(x) = F(x) +C, where C is any fixed
real number. Then it is easy to see that G'(x) =F'(x)+C'= f(x), so that
G(x) is also an antiderivative of f(X).

Example1l. The functions F(X)=sinXx, F(x)=sinx+5,
F3(X) =sin X—~/2, as well as any function of the set {sin x+C,VvC R},

are the antiderivatives of the function f(X)=cos X, because
(sin x)' = (sin x+5)" = (sin x—~/2)" = (sin x+C)’ =cos x.
A second observation, somewhat less obvious, is that for any given
function f(X), any two distinct antiderivatives of f(x) must differ only by

a constant. In other words, if F(X) and G(x) are both antiderivatives of f (x),
then F(x)—G(x) =const. It is summarized in the following statement.
Theorem 2. If F(X) is an antiderivative of the function f(X) over some

interval |, then:
e for an arbitrary constant C the function F(x)+C is also an anti-

derivative of f (X) over this interval;

e any other antiderivative G(X) of the function f(X) over | is of the
form G(X) = F(X)+ C, where C is a certain real number.

Definition 2. The family {F (x) + C,VC € R} of all antiderivatives of the
function f(X) is called an indefinite integral of this function and it is denoted
by [ f(x)dx. We write

[ f(x)dx=F(x)+C. 2)

The symbol [ is called an integral sign, the function f(x) is called the
integrand, X is the variable of integration.
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Definition 3. The operation of finding the indefinite integral is called
integration or integrating.

If we have to be specific about the integration variable, we say that we
are integrating with respect to X.

Notice that both the integral sign j and dx are required. We can think

of them as a set of parentheses. The dx that ends the integral is nothing more
than the differential. The differential matches the variable of integration.
(It becomes very important in using such integration techniques as substitution
and in multivariable calculus where integrands may involve several variables.)

As the immediate consequence of formula (1) and our knowledge of
derivatives we can easily obtain the antiderivatives of many elementary
functions. Let us list the corresponding formulas (Table 1).

Table 1
The table of basic integrals
1 2
1 | [O0dx=C
2 | [dx=x+C
Xa+1
3 | [x%dx= +C, a=-1

a+1

4 jgzjx‘ldx=ln|x|+c
X

X

5 jaxdx:a—+C, a>0, a=l
Ina

6 | [e*dx=e*+C

7 | [sinxdx=—cosx+C

8 | Jcosxdx=sinx+C

dx

9 | [—5—=1tgx+C
COS~ X

10 j_d)z( =—ctgx+C
sin” x




Table 1 (the end)

1 2

dx . X

11 | [—==arcsin—+C, a>0
a? — x? a
dx 1 X

12 | [——=—arctg—+C, a>0
X‘+a° a a
dx X-a

183 || 5———F= I +C, a=0
X‘ —a 2a |X+a

‘x+\/x +a‘+C a=0

14f2
X" +a

dx
15 | [——=In|x—al|+C
X—a

16 | [tgxdx=—In|cosx/+C

17 | [ctgxdx =Injsinx|+C

dx X
18 csexdx=[——=Ihjitg—|+C
I Ismx g2

+C

dx X T
19 secxdx=[——=Inltg| — + —
] [ g(z 4)

COSX

The formulae 15 — 19 are not really basic but it is useful to have them
at our disposal.

Example 2. There are some examples of using the basic formulae given
in Table 1:

3
,+1 s
2
a)j\/_dx szdx—l— C:% ——F+C (formula 3, a—l)
—+1 — 2
2 2
2 —+1 1
dx - X 3 x3 2
b) IWIJX 3dx=_2+1+C 1 +C =3-3/x+C (formula 3, a——g)
3 3

C) ji = arcsin X +C (formula 11, a= \/g);

5—x? V5



dx
x° -5
Don't forget "+C" at the end, it is important.

d) | —In= In‘x+\/x2 —5‘ (formula 14, a = -5).

2. The properties of the indefinite integral

It is obvious that many characteristic properties of the indefinite integral
can be obtained simply by referring to various rules concerning derivatives.
These properties occur very useful in calculating and verifying the integrals of
more complicated functions, so we list here a number of such results.

Suppose that functions f(X) and g(X) have antiderivatives F(X) and
G(X) respectively. Then the following statements hold.

1. A derivative of an indefinite integral equals the integrand:

(] f (x)dx) = (x). 3)
This property can be used to verify the correctness of integration.

2. The indefinite integral of a derivative of a function equals the sum of
this function and an arbitrary constant:

[F'(x)dx=F(x)+C.

The table of basic indefinite integrals is the consequence of this property and
the derivatives of elementary functions.
3. A differential of an indefinite integral equals an integrand expression:

df f(x)dx = f(x)dx.

4. The indefinite integral of a differential of a function equals the sum of
this function and an arbitrary constant:

[dF(x)dx=F(x)+C.

5. The constant multiple rule. Any fixed real factor can be taken outside
the sign of the integral:

[kf(Qdx =k] f(x)dx=kF(x)+C, k=const. (4)

6. The sum rule. The indefinite integral of an algebraic sum of functions
that have antiderivatives equals an algebraic sum of the indefinite integrals of
these functions:

[(F)xg(x))dx =] f(x)dx+£[g(x)dx=F(x)£G(x)+C. (5)
7



This property is valid for any finite number of addends.
Formulae (4), (5) can be easily verified by differentiation according to
property 1 and due to derivative rules.

7. The invariance of the integration formula. If [ f (x)dx=F(x)+C

and U=¢@(X) is a continuously differentiable function over some interval,
then
[ f(u)du=F(u)+C. (6)
Indeed, due to the invariance of the form of the first differential we have
dF(u) =F'(u)du = f (u)du,
that implies
[ f(udu=[dF(u)=F(u)+C.

The integration regarding the table and the basic rules of indefinite
integrals is called the direct integration.

Remember that we can always check the answer by differentiating and
making sure we get the integrand.

Example 3. Evaluate the integrals by direct integration and check the
results by differentiation:

a) [ 14 2x— S Jdx: b) | 74612 = > ot ldt:
X t2

c) | 1 - 22+ S _ 42de;
4—x> A+Xx° x?4+4 4-X
(x—3)2 2x° 2

d) — +1tg“x (dX.

I N X +1
Solution.

a) I(1+ 2x—§jdx=\sum rule (5) |=

=fdx+j2xdx—j§dx:\constant multiple rule (4)|=

formula 2;
:fdx+2-fxldx—3-j%= formula 3with o =1, =
X
formula 4



1+1

=X+2- —3-In|x/+C =x+x*-3In[x/+C.

1+1
Here and below don't forget the absolute value bars in the argument of
the logarithm function.
Taking into account that

, 1 for x>0, 1
(In|x)) = Xl =—, (7)
—X-(—l) for x>0

we ensure that the derivative of the indefinite integral obtained coincides with
the integrand:

(x+x? =3In|x+C) :1+2-x2‘1—3-%+0:1+2x—§.

b) Changing the integration variable in the integral just changes the
variable in the answer:

J(7+6t2 —%_thdt =|sum e (5)]=
t

:j7dt+j6t2dt—j%dt—j2tdt =| constant multiple rule (4)|=
t

’ formula 2;
=7jdt+6jt2dt—3j—2t—j2tdt= formula 3with a =2, =2 =
t formula 5with a=2

2+1 —2+1 t
:7t+6-t 3.1 _ 2 +C =
2+1 -2+1 In2

t
:7t+2t3+§—2—+C.
t In2

Differentiation with respect to t confirms the integration result:

t !/
7t+2t3+§—2—+C =
t In2

:7+2-3t3‘1+3-(—1)-t_1_1—%-Zt n2+0=
n



=7+6t2—§2—2t.

t

1 2 3 4
C + + - dx =|{sum rule (5) | =
)I[ A_x? 4+x* Ix?ia4 4—X2j ‘ ()‘
3dx 4dx

= | —x2 I4+x I\/T j4 2 - =| constant multiple rule (4)|=

:I\/rzjz 3]\/7(4)J2
formula 11 with a = 2;
formula 12 with a=2;
formula 13 with a = 4;
formula 14 with a=2

:arcsin§+2-1arctgz+3-ln‘x+\/x2+4‘+4- L pX=2,c-
2 2 2 2-2 |X+2
—arcsmg+arctg +3In‘x+\/x + ‘+In §+C.

The derivatives of each term are obtained with the help of the chain
rule

(f(g()) = F(9(x)-9'(x) @)

and formula (7):

( .xj 1 (xj 1 1 2 1 1
arcsin = | =—— .| 2| = g T ;
2 2 4-x* 2 JA—x* 2 4-X°

1+
(In‘x+\/ﬁ‘ ) = X+m-(x+\/m>,



1 .(1+ X J_ 1 IX+4+x 1

X+~ X +4 I +4) x+Ix2+4 IxP+4 X244
nX—2 _x+2(x—2) B (Ej _UvV—VU | X+2 x+2-(x-2) _
X+ 2 Xx—2 (X+2 v V| x—2  (x+2)?

B 4 4 B 4
(X=2)(x+2) x*-4  4-x*
This yields the correctness of the calculations in this case.

d) Sometimes evaluation can easily be reduced to direct integration by
identity transformations:

(x=3)* 2x* 5 ). |, 1 |
j{ T 21thgxdx_tgx_ ——1|=

X"+ COS™ X

_9.
Jx x2+1  cos? x

2 2
(X bxe0 a1l 1 _qu:

9 X2 +1 1 1
= || Xa/X—=6~/X + —2- +2- + —1|dx =
/ Jx o x* 41 x*+1 cos®x ]

3 1 1 1 1
:j X2 —-6-X24+9.-x 2-2+2- + —1de:
X

x> +1 cos?

3 1 1
dx
— [x2dx —6[ x2dx+9[ X 2dX + 2
=] J +9] i jx2+1 jcoszx

—3[dx =

formula 3 with a_§ 1 —E,
= 2' 2" 2 =
formula 12 with a=1; formula 9; formula 2
5 3
_2x? 2X?2 S

- —6- 2 +9-2x2% + 2arctgx + tgx—3x+C =

:éx2 X — 4%~/ +18v/x — 3x + 2arctgx + tgx + C .

We suggest that you check this result yourself with the help of
differentiation. Obviously, this will require transformations of the function
you get.
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It is worth to note that integration is more complicated than differentiation.
As we have already mentioned the indefinite integral exists for any continuous,
for example, any elementary function. Despite this, it is not always possible
to express the antiderivative of a function by means of elementary functions.
In particular, many integrals important for application define the special functions
such as the Gaussian integral (Euler — Poisson integral), the error function,
the sine and cosine integrals, elliptic integrals etc.

For example, no elementary function exists for such integrals:

2
[e™ dx — Poisson integral;

[sin X2dx, [cos x°dx — Fresnel integrals;

sin X .
[=—dx - Sine integral;
X
COS X

———dx — Cosine integral;
X

—X

e e
[~—dx, [=—dx - Exponential integral;
X X

dx . :
j— — integral Logarithm;
In x

[x%sin xdx, [x%cosxdx, [x%e*dx (a#0,12,..) etc.

3. The substitution rule for the indefinite integral

Here we discuss one of the main techniques of integration that are
based on the chain rule (8) in differentiation. This method is called integration
by substitution or change of variables. It allows us to find antiderivatives
of more complicated functions.

The substitution rule. If u = g(x) is a differentiable function on an interval

la,b] and f is continuous on that interval, then

J H(g(x))g'(x)dx = [ f(u)du. (9)

12



There are two ways to apply this method. We can use formula (9) from
left to right or from right to left. However our purpose is to transform the given
integral into another that is easier to compute.

Notice that this technique doesn't always work. Besides, when it does,
there may well be more than one suitable substitution.

Consider both versions of the change of variables and discuss the features
of the use of this version.

Version 1. Substitution u = g(X).

Let an integral j gp(x)dx be given and the antiderivative of the function
(p(x) is unknown. Suppose the integrand can be written in the form
o(x)= f(9(x))g'(x).

The substitution U = g(X) is made, then du = g'(x)dx, and we get

u=g(x)

U = ' ()dx = f(u)du. (10)

[o(x)dx =] f(g(x))g'(x)dx =

It makes sense if we know the antiderivative of the function f(u) that

appears on the right-hand side of formula (10). Then the computing of the integral
is as follows:

=[f(u)du=F(u)+C=F(g(x))+C.

We see that in Version 1 the new variable U is written as a function of
the old variable x.

The first manner is also known as u-substitution as well.

Remember that upon performing the substitution every x in the integral
(including dx) must disappear in the substitution process. And it's important
that when calculating the integrals by substitution it is necessary to return to
the original variable.

The natural question is how to identify the correct substitution. There is no
general rule or prescription, it depends on the integral. Regarding formula (10)

we should find a composite function f(g(x)) with a known antiderivative

on the one hand, and the derivative g'(x) of the new variable u=g(x)

on the other. So, each integral requires an individual analysis of the integrand
to find a suitable changing of variables.

13



Example 4. Let's evaluate some integrals using the method of substitution:
a) [e”"* cosxdx; b) [X~/2—3x? dx.

Solution.

a) We observe the composite function €"* (with the inside function
sin X) and the derivative of Sin X, so it's pretty clear that sin X is a new
variable:

u=sin X

[e"* cos xdx = _
du = (sin x)'dx = cos xdx

=[e"du=

=|formula 6|=¢"+C=¢"""+C.

b) Sometimes for using U -substitution only a constant factor is lacking.
In our example, the first guess for the substitution is to make U be the stuff
under the root. But at first we need to do some manipulation, namely, to multiply
and divide the integrand by 6:

2
jxx/2+3x dx = U=2+3x"

du = (2+3x?)'dx = 6xdx

N w

=5 j6xx/2+3x dx—— j\/_du_— juzdu_
=%JF+C: J(2+32f +C.

It is useful to keep in mind the following formula of linear substitution:

00||\)
C
+
@)
Il

@IH

1
9

[  (kx-+ b)dx = % F(kx+b)+C.  Kkb=consts(k =0), (11)
in particular,

jf(kx)dx:%F(kx)+C, (k = 0).

Obviously, in formula (11) we have, in fact, the substitution
du
u=Kkx+b; du=(kx+b)'dx=kdx < ?:dx'

14



Example 5. Let's apply the formula of linear substitution:

[(cos2x+e™* +~/5x—4)dx =| sum rule (5)|=

1
= [cos 2xdx+ [e*dx — [(5x —4)2dx = | formula of linear substituti on (11)|=
“Lginoxs e L. g(5x 4) +C= sin 2x _ex_2
2 -1 53 2 15

Version 2. Substitution X=g(u).

(5x—4)’ +C.

Let an integral [ f(x)dx be given and the antiderivative of the function
f (x) is unknown. If we make substitution X = g(u), then dx = g’(u)du:

_[x=g(u)
JT(x)dx = dx = g'(u)du

=[f(g(u))g’(u)du. (12)

It makes sense if we know the antiderivative of the function f(g(u))g’(u)
that appears on the right-hand side of formula (12).

Notice that in Version 2 the old variable x is written as a function of the
new variable U.

This version of substitution is mainly used for the transition from one
class of functions to another.

Example 6. Evaluate the integrals of the irrational function by substitution:

dx
—_— b) [ X~/1— xdx.
5] e
Solution.

a) This integral involving the root is reduced to the integral of the
trigonometric function:

% X=sinu cosudu
,/(1 x?)? " ldx = (sinu)'du = cosudu| J(1 sin u)
cosudu cosudu du
=] 3 =] ;7 =1gu+C=
(/cos u)3 cos” u cos“u
sinu sinu X

LY G L Y o e
cosu J1=sin?u 1—x?



b) In this case we can transform the integrand to a polynomial by
substitution:

X=u?-1

= j(u2 —1)-u-2udu =
dx = (u? —1)'du = 2udu

[x+/x+1dx =

3

5
=2[u*du—2[u’du = 2-%—2-%+C =§1/(x+1 > —%«/(x+1)3 +C.
There is another way of substitution that leads to direct integration (the

table of basic integrals), namely, x=v—1; dx =dv. We suggest that you do
it yourself and compare the results.

Summarizing, to apply the method of substitution in the indefinite integral
we have:
e to choose the substitution of one of the form u = g(x) or x = g(u);
e to compute du = g'(x)dx or dx = g'(u)du;
e to change every expression with x in the original integral for u;
e to use the substitution rule formula (10) or (12).

At the end of this section let's make some remarks. If the substitution
you made failed, it doesn't mean that this is a wrong method, it may well be
an unsuitable substitution. Moreover, in case of success, another attempt
may lead to a better change of variables.

Notice also that there is no simple routine that we can describe to help
find a suitable substitution, even when the technique works. So, the only way
to learn how to substitute is to just solve lots of problems of different kinds.

4. Integration by parts
At first, let us recall the product rule for differentiation:

(uv)' =u'v+uv', (13)
where U(X) and u(x) are differentiable functions.

Integrating (13) with respect to x we obtain:
[ (uv)'dx = [u'vdx + [uv'dx.
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On the left-hand side we have the indefinite integral of uv and we can
rewrite this equation as follows:
fuv'dx =uv — [u'vdx.
Finally, since V'dx =dv and u’dx = du, we get the integration by parts
formula:
fudv=uv-[vdu. (14)
Formula (14) is useful when the indefinite integral jvdu on the right-

hand side is much easier to calculate than the original integral judv.
To apply the method of integration by parts to the indefinite integral

we have:
e toidentify u and dv;

e to compute du=u'dx and v = [dv;
e to use formula (14) of integration by parts.

Example 7. Let us integrate by parts the integral j (3X +1)- e*dx. Indeed,

choosing U=3x+1 seems good, because after differentiation X will drop
out, and the integral of the exponential function is one of the basic formulae:

U=3x+1 du=u'dx=3dx
dv=e”dx, v=[dv=[e*dx=¢e" -

=(3x+1)e* —[e*-3dx=(3x+1)e* —3e* +C =(3x—2)e* +C.
The question is how to identify the need for integration by parts and

then how to make a correct choice of U and dv.
The good news is that there are some typical cases (Table 2). Of

course, they do not exhaust the possibility of applying this method.

[(3x+1)-eXdx =

Table 2
The types of functions integratable by parts
Type Kind of integral Factor U Factor dv
1 2 3 4
o |[[Pn(®)- adx* dv = a*dx
o
> X _ X
5 [P, (x) e. dx U=P.(x) dv .e dx
o [ By (X) - sin xdx dv =sin xdx
" [[P,(x)-cos xdx dv = cos xdx

17




Table 2 (the end)

1 2 3 4
[P, (x)-log¥ xdx u=log¥ x
§ [P, (x) - arcsin xdx u=arcsin x
E [P, (x)-arccosxdx U = arccosx dv = P, (x)dx
é’ [P, (x) - arctgxdx u = arctgx
[P, (x) - arcctgrdx U = arcctgx
- u = sin bx dv=a’dx
o []a”-sinbxdx X
5 oru=a or dv = sinbxdx
2 U = cos bx dv = a*dx
- X
= | [a” -cosbxdx y
or U=a or dv = coshxdx
© | [va®—x%dx u=+a?-x*
>
£ |[[va®+x?dx u=va?+x2 dv = dx
(O]
= | [Vx® —a?dx u=+x%-a?

*P (X) =a,X" +...+aX+a, is a polynomial.

Thus when faced with an integral, we must first realize the type of integral
to correctly apply formula (14).

Example 8. Consider the examples of integration by parts:
a) [ xIn xdx; b) [e” sin 2xdx.
a) We can quickly recognize the second type of those mentioned in
Table 2:
, 1
u=Inx, du=udx==dx
[xIn xdx= X =

dv = xdx, v:jdv:jxdx:%

2 2 2
=% x—%sz Lax=Xm X—XZ-FC.

2 X
b) This one is of the third type, because e* is a particular case of a*.
Here, breaking up into U and dv is arbitrary, but integration is a little tricky.
18



We have to apply the integration-by-parts formula twice, and then express
the given integral from the resulting equation:

u=e* — du=e*dx
COS2X |~
2

:ex_(_costj_(_cost)ede: % 1 e cos 2xx=

| =[e*sin 2xdx=
dv =sin 2xdx V=—

2 2

X
H=e _ __eX0052x+1
sin 2X o o

= du=e’dx sin 2x  .sin 2x
(ex —I eXdX) =

dv=cos2xdx V= 2

X X o
_ _ e’ cos2x %e sin 2x——je sin 2xdx = — c032x+e sin 2x_£I

2 4 4
To find the integral we solve the linear equation on this integral:

e‘cos2x e’sin2x 1

| =— + ——1;
2 4 4
1 e’ cos2x e*sin 2x
l+—1=- + ;
4 2 4
5, __eX0052x+eXsin 2X
4 2 4

Finally,
X

| = [e*sin 2xdx:%(sin 2X —2c0s2x)+C.

5. Integration of polynomial fractions

In this section we discuss the integration of rational expressions of
polynomials.

We start with so called elementary algebraic fractions. They are of four
types, namely:

B
5 3 Ax+ B 4 Ax+B

A
1. — . 4. ,
X—a (x—b)" X% + pX+(q (X* + px+q)"

19



where n is a natural number more than one; square trinomials have no real
roots, i.e. p?-4q<0.
Let us take a look at the integrals of each type of elementary fractions.

The indefinite integrals of fractions of the first and second types are
easily computed by linear substitution formula (11):

1. jidx:Aln\x—aHC. (15)
X—a
B _ B 1
2. dx=B[(x—b)"dx = : +C. (16)
Lo & B e o
For example,
5 10 2
——dx=5In|x-3|+C, dx =— +C.
IX—3 %3 j(x+7)6 (x+7)
Similarly, regarding (11) we get indefinite integrals in more general cases:
[ A dx=—2 nlkxtb|+C; 17)
kx+Db K
jidh— B L 7 +C. (18)
(kx+b)" k(n=1) (kx+b)"~

3. 1= jZAX—Jrde IS integrated by the substitution method.
X“+ pX+(q

When integrating the fraction of the third type, we have:
e to select the full square in the denominator:

2 2
2 P P,
X+ pX+0=|X+—| +g———:

PX+( ( 2) q 4

e to enter a new variable X+ p/2 =t:

X+p/2=t A(t—pj+B
| =|x=t—p/2|=] 5—dt;
dx =dt t2+q—|04
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e to integrate two terms we obtained:

At

I 2 pz 2 Y
te+q-"- t°+q-
+0 A

Example 9. Compute the indefinite integral from the fraction of type 3.

X—2=t
jzgx—_ldx:j 3X_21 dx=|x=t+2|= jS(H—z)ld
X° —4x+8 (x—2)"+4 dv — dt t* +4

:3I

3, ,.2 5 t
=—In(t"+4)+—arctg—+C =
2+4 2 5 It +4) +arctg -

:—In(x2—4x+8)+§arctgx—_2+c.
2 2 2

The considered approach can be applied to some integrals involving
guadratic expressions (a square trinomial), namely:

1) j 5 dx — an indefinite integral in which the square trinomial

has a positive discriminant (p2 —4q > O);

Ax +B : L : : : :
2) j dx — an indefinite integral involving the square trinomial
2 +bx+c
with the Ieadlng coefficient;
Ax+B e :
3) j dx — an indefinite integral with a square root of a general
Jax? +bx+c

guadratic expression in the denominator.

Ax+ B
= j —dx is reduced to an integral of type 3.

(X* + px+0q)
Integration of a type 4 fraction is generally very cumbersome: by means
of multiple integration by parts it is reduced to an integral of a fraction of
type 3.

21



dx

A recurrent formula for |, = jﬁ has the form:
(x +a“)
1 X 2n-1
|n+1 = 5 In . (19)

: +
2an® (x*+a%)" 2na

dx 1 X
5 =—arctg —+ C, then we can find the integral 1,

Since we know 1y = |
X“+a~ a a

forany n.

Now consider a rational expression in the form:

R(x) = P.(X)  aXx"+a, X""+..+ax+a,

- B ’ 20
Q,(X) b x"+b X"t +..+bx+b, (20)

where P,(x), and Qpu(x) are polynomials of degrees ne NU{0} and

m € N respectively.

Definition 4. The rational fraction (20) is called proper if the degree of
the numerator P, (x) is less than the degree of the denominator Q, (x) that

IS N < m; otherwise, if N > m, the fraction is called improper.

To integrate the polynomial fraction (20) we must first perform partial
fraction decomposition (partial fraction expansion), that is express the
fraction as a sum of a polynomial (possibly zero) and one or several fractions
with a simpler denominator.

An improper fraction can always be presented as the sum of a polynomial

T_m(X) and fractions:

R(0= 800 1, e o

where T,_,(x) and Po, (x) are polynomials, 0<ny <m-1.
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Example 10. Let us present the polynomial fraction

3
R(X) :#
X —X+2
in the form (21).
We have:
2x3 +1
0B o aay X2
2X+ 2
2x% —4x+1
2x% —2x+4
—-2x-3
Then
3 J— u—
R(X) Z#ZZX-FZ-F#.
XS —X+2 XS —X+2

Theorem 3. Every proper rational fraction can be decomposed into
a sum of elementary fractions.

Remember that partial fractions can only be decomposed if the degree of
the numerator is strictly less than the degree of the denominator.

Py (%)
Qm(X)

To decompose a proper rational fraction R(X)= (n<m) into

a sum of elementary fractions we have:
e to factorize the denominator Q,(X) (present it as a product of

linear factors (X—Db) and quadratic factors (x> +cx+d) with negative

discriminators);

e to assign the simplest rational algebraic fraction or amount to each
factor of the denominator (Table 3);

e to write R(X) as a sum of all elementary fractions with unknown
numerators (we assign variables, usually capital letters, to these unknown
values);

e to determine the coefficients of partial fraction expansion.
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Table 3
The correspondence between the factors of the denominator
and elementary fractions

No. . The factgr The term in the partial fraction decomposition
in the denominator
A
1 X—a e
X—a
5 (x—b) B, B . B ;
X=b (x-b) (x—b)
) Cx+D
3 X°+ pX+q N
X“+ px+q
C1x+ D, Cox+D, Cx+ Dy
4 X + pX+ + .
( P q)s XZ + px+( (x +px+q)2 (x2+px+q)S

To find the expansion coefficients we can use the method of indefinite
coefficients according to which the finding of the expansion coefficients is
reduced to the solution of the system of linear equations. The method is
based on the following properties:

a) the equality is not broken if both of its parts are multiplied by the
same expression;

b) equal polynomials have equal coefficients of corresponding powers
of the independent variable.

Example 11. Consider examples of the integration of rational algebraic

2
X“dx
fractions: a : b)
| )Ix3—x2+x 1 S x13f (x 13)

Solution.

) I X2 +x—2
S_x?+x-1

Slnce the second degree of the polynomial in the numerator is smaller

than the third degree of the denominator, we have a proper rational fraction.
The first thing is to factorize the denominator:

x3 —x? +x—1:(x—1)(x2 +1).
3 +x-2 3 +x-2
X2 yx-1 (x-1)x* +1)
24
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Now we get the form of the partial fraction decomposition:
3X* +x-2 A Bx+C

(x-1)x* +1) N (x—1)Jr (x?+1)

We multiply both parts of the equality by the denominator and thus get
the equation:
3x2 +x—2= A\x2 +1)+(Bx +C)x—1);
3x*+x-2=x*(A+B)+x(C-B)+A-C.
Let's find the expansion coefficients A, B, C. It's useful to begin with

the substitution of the root X =1 of the denominator:
3+1-2=Al+1) = A=l

Then we solve the linear system:

x?:  3=A+B,
X: 1=C-B,
x: —2=A-C,

—=B=3-A=3-1=2; C=1+B=1+2.
So,
3X° +X-2 1 2X+3

x-1¢+1) " (x-1) [+1)°

X2 +x—2 dx 2X+3
Ve )™ =i e
dx 2Xdx 3dx dx d(x +1)

L e e e e e

= In\x—]l+2|n‘x2 +]4+3arctgx+C.

b)
ol
This time the denominator is already factorized, so let's proceed to the

partial fraction decomposition:
1 A B C

- =y = .
x(x=3 x x-3 (x-=3)
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Multiplying by the denominator we get:
1= A(x—3)" + Bx(x—3)+Cx;
1=x*(A+B)+x(6A-3B+C)+9A.

At first we substitute the roots X, =0, X, =3 of the denominator:

=0 =1=9A :>A=%;
1
X, =3 =1=3C :Czé.
Then
x*: 0=A+B :B:—A:—é,
X: 0=6A-3B+C,
x°: 1=9A

and the result of decomposition is as follows:

1 111 1 1 1

1
3(x—3)

:lln\x\—lln\x—B\—
9

+C.
9

6. Integration of trigonometric functions

We begin with the technique that allows us to reduce the integration of
trigonometric functions to the integration of rational algebraic fractions. In this
context we consider several types of integrals.

Denote R(U(x),V(X) ) a rational function of its arguments.
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Integrals of the type jR(Sin X,c0s X)dx can always be computed

X
using the substitution t =1g > Then

2dt
1+t2"

X
5= arctgt = x=2arctgt = dx=

and

2tg(x/2) 2t 1-1t9%(x/2) 1-t°
2 =2 COSX= 2 T 1.2
1+1g9°(x/2) 1+t 1+19°(x/2) 1+t
Since the functions

sin X =

2
1-t 2dt
—— . COSX = 5 and dx= 5
1+t 1+t 1+t
are rational functions of the variable X, the given integral turns into the
integral of a polynomial fraction with respect to the variable t (the results of

arithmetic operations over the fractions are fractions):

(22)

sin X =

. 2t 1-t?) 2dt
| =[R(sIn x,cos x)dx=|R , : =|r(t)dt.
IR( ) J (1+t2 1+t2] 1+t2 [r®
. dx
Example 12. Let's evaluate the integral [ ————.
3—-2Cc0s X

X
By substitution T = tg E and using formula (22) we obtain:

t=1g9—

dx 2dt 1 2dt
j_—=dx= > |=] 21 2
3—2Cc0sX 1+t 1-t° 1+t

2 3-2- 2

1-t 1+t
COSX = 5
1+t

dt dt 2 dt
A 2ae) Jiese) 5! —(1”2)‘
5

) 1 2 2 X
= [formula 11with a=——| = =+/5-arctg(t~/5 )= —— arct (\/gt —j+C.
JE‘ 5 g( ) J5 J 95
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: X
The integration of R(SIn X,C0SX) by the substitution t:th is sure

to give the desired result, but it is because of its generality that this method
may not be the best from the point of view of brevity and simplicity of the
transformation involved.
There are some recommendations that are useful for special cases of
the integrand.
1. If R(sin X,c0s X) is an odd function with respect to Sin X, i.e.
R(—sin X,cos X) =—R(sin X,cos X),
we use the substitution t = COS X.
2. If R(sin x,cos X) is an odd function with respect to COS X, i.e.
R(sin x,—cos X) =—R(sin X,cos X),
we use the substitution t =sin X.
3. If R(Sin X,cos X) is an even function with respect to both arguments, i.e.
R(—sin x,—cos xX) = R(sin X, cos X),
we use the substitution t = tgx and the formulae

2 2
: tg“X t 1
sin2x=_9 —=——, cos? X = —=—
1+tg°x 1+t 1+tg°x 1+t
or the substitution t = Cctgx and the formulae
. 1 1 ctg’x  t?
Sin 2 X= COS2 X= g =

2 1+Ctgzx_1+t2'

1+ ctgzx 1+t
4. Integrals of the type [R(sin x)cosxdx are integrated using the
substitution t =sin X.
5. Integrals of the type [R(cosx)sin xdx are integrated using the
substitution T =COS X.

6. Integrals of the type [R(tgx)dx are integrated using the substitution
t =1gx.

Now consider a few special cases widely used in practice.
The integral of the form

| =[sin™ x-cos" xdx, mez, nez, except m=n=0
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Is a special case of 1-3, so:
e if M is odd, we put t =COS X;
e if N is odd, we put t =Sin X;
e if M and n are even, we put t =1gX or t = ctgX.

In the third case, instead of the proposed substitutions, formulae for

decreasing powers are often used (trigonometric functions):
. o 1-co0s2x o 1+cos2x
Sin XZT, COS XZT,

i sin 2x
sin XCOS X = 5,

5
X
Example 13. Let us find | C_OSZ dx.
sin “ X
We have m=—-2, n=5. Since the integrand contains an odd degree of
COS X, we perform substitution t =sin X, write cos® X as t =cosxcos* X and
apply the identity sin % X +c0s% x =1
cos® x t =sin X, dt =cosxdx
5 dx=| .2 2|~
sin © X cos“ x=1-sin“ x=1-t
cos* x cos x (1-t2)2 1-2t% +t4
= — dx:j—zdt:j—zdt:
sin“ X t t
P 5 1 t3 -1 . ,
=[(t™°-2+t°)dt=——-2t+—+C=——-2sin x+sin“ x+C.
-1 Sin X

Now consider the integrals of the product of the first degrees of sines
and cosines with different arguments:

jsin mx -cosnxdx, jcos MX -COS NX dx, jsin mx-sin nxdx,

where m and n are real numbers.
Calculation of these indefinite integrals is reduced to direct integration
through the use of trigonometric formulae:

sin & -sin = %(cos (a — ) —cos(ax —/3)),
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COSc -COS B= %(cos (a— B) +cos(a + B)),
sin a-cosﬂ:%(sin (a+ B)+sin(a - p)).

Example 14. Let us find the integral Isin 3x-cos7xdx.
Using the formula above we get:
[sin 3x-cos7xdx =|a =3x, B=T7x|= %j(sin 10X +sin( —4x))dx =
_[sin(—4x) = —sin 4x B

~llinear substituti on formula |

= 1(jsin 10x dx — [sin 4x dx) = L cosax— 1 costox+C.
2 8 20

At last, consider the integrals of natural degrees of the tangent and
cotangent:

[tg"xdx, [ctg"xdx, where 2<neN.

In this case we use the substitutions t =1gx and t = ctgX respectively.
Thus we have:

t=tgx, x=arctgt i
tg"xdx = 1 = dt = [r(t)dt;
I dxzﬁdt J.'[2_|_:|_ I
t =ctg x, x =arcctgt o
fetg"xdx = 1 =—| dt =—[r(t)dt.
dX:_1+t2 dt t2 +1

Example 15. Let's find the integral jctg6xdx.
Let t = ctgX, then:

t =ctg x, x=arcctg t /6
ctg6xdx: dt =—
f dx=—— e
1+t

dt:—j(t4—t2+1— 21 jdt:
t°+1
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5 .3 5 3
=— t——t—+t+arcctgt +C=—- Clg"x _Clg X+ctgx+x +C.
5 3 5 3

7. Integration of some irrational functions

In this section we consider the integration techniques that can be useful
for some types of integrals with irrational terms in them, i. e. involving roots.
1. Integrals of the type
m My

IR X,(aXer)nl,...,(aXerjns dx, mjez,n ez
cx+d cX+d

(where R is a rational function of its arguments) can be reduced to the
integrals of rational fractions using the substitution

ax+b
cx+d

£k
: . om .
where K is the least common denominator of the fractions —,1=1,S.
N;
In particular, to simplify the integrals of the form
m &

[R| X, (@x+b)™ ... (ax+b)" | dx

we use the substitution ax+b=t*.

Example 16. Let's find the indefinite integral

dx
| .
3(2x—1)? —2x-1
my _g m, 1

In this case — =—,—%= ==, then k=6 and we apply the substitution
n 3 n, 2

2x —1=t5:

2x—-1=1% t=8/2x -1

dx 5
j = 2dx = 6t°dt =
3(2x-1)? —2x-1 i — 35t
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5 t2 2
dts_ 3] todt _ f(t 1)+1dt_
t* —t t-1 t-1

_3j
1 t2 6
=3 t+1+:L dt =3 E+t+ln\t—1\ +C:‘t:«/2x—l‘:
=3(Y2x-1+2%2x-1+2h|¥2x-1-1] )+ C.

2. Integrals of the types

1) [R x,\/az—xz)dx,
2) [R x,\/a2+x2)dx,
3) [R x,x/xz—az)dx

can be reduced to the integrals of rational fractions using the following
trigonometric substitutions respectively:
1) Xx=asint or X=acost,
2) X=atgt or XxX=acigt,
a

a
3 X=—— or X=——.
sint cost

dx
Example 17. Compute the indefinite integral j—
X\ X2 +

The integrand contains the quadratic term x> +a’

square root. So, we put X =31gt:

= x% +3% under the

x=3tgt, dx= dt
| _ cos? t oy 1 cost 3 dt =
X\ x% +9 9+ x2 =3\1+1g% = 3 3tlgt 3 cos’t
cos t
j—dt_—ln tg— +C:‘t:arctg§‘:lln‘tgw‘+c
sin t 3 3] 3
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To simplify the resulting expression let's use the trigonometric
relationships:

tgéz 1-cost 1 —ctgt =/1+ctg?t —ctgt =

sint sint
2_
ltgt=X, cgt=3]= 142 3 VIFX 23
3 X X X X

dx =1In Vx?+9-3
xVx>+9 3 X

Finally we get |

Theoretical questions for self-assessment

1. What is called an antiderivative, an integrand expression, an integration
variable? Give examples.

2. Give a definition of an indefinite integral.

3. Formulate the basic properties of the indefinite integral.

4. Write down the table of basic indefinite integrals.

5. Which operation is more difficult: differentiation or integration? Justify
your answer.

6. What are the main methods of integration you know?

7. What is the method of direct integration?

8. What is the difference between the change of a variable and substitution
in the indefinite integral? Give examples.

9. Give the formula of integration by parts.

10. When is integration by parts applied?

11. Give examples of integrals that "are not taken".

12. What functions are called rational? Give examples.

13. What rational fraction is called proper (improper)?

14. What integrals are called proper and improper? Give examples.

15. Give a general scheme of integration of rational functions.

16. What types of irrational and transcendental functions can you
integrate?

17. What is universal trigonometric substitution? When and for what
purpose is it used?

18. Describe the essence of the method of indeterminate coefficients.
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Test for self-assessment

1. When is F(X) the antiderivative of f(X)?

a) £'(x)=F(x); b) F'(x) = f(x):

c) f(X)=F(X)+C; d) F(x)=—1(x).

2. Choose the wrong properties of the indefinite integral:

a) [dF (x) = F(X) +C; b) d ([ f(x)dx)= f(x)+C;

c) [ f'(x)dx=f(x)+C; d) | F(x)g(x)dx = [ f (x)dx- [ g(x)dx.
3. The integration-by-parts formula has the form:

a) [udv =uv — [vdx; b) [udv =uv+ [vdu;

¢) fudv=uv—[vdu; d) fudv=uv—[du.

4. Choose the integrals that can't be found by direct integration:

a) j3x2dx; b) sz cos xdx; c) [3cosxdx; d) [(3+x)dx.

5. Choose the integrals that can be found by direct integration:

a) [x2%dx;  b) [(x—7z)dx; c) j(x+2x)dx; d) szxz dx.

6. Choose the integrals that can be calculated by substitution:

a) [arccosxdx; b) [cos(4—3x)dx; c) [xIn xdx; d) jln xdx
X
7. Which of the following integrals can't be found by substitution:
a) [arctgxdx;  b) [e""*cosxdx; c) [e¥*dx;  d) Iarctgxzd X2
1+X
8. For which of the following integrals do we use integration by parts:
a) [(x* +3)dx; b) jez”ldx; c) [xlog, xdx; d) [dx?
9. Choose the integrals that can be calculated by parts:
. dx x°dx >
a) [arcsin xdx; b) [———; ¢) ; d) [vVx©+1.
J J%/;+\/§ J3x2+2x—5 I
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10. Which of the following integrals can't be expressed by elementary
functions:

a) sz sin xdx;  b) [ xsin x°dx; c) [sin x°dx;  d) [sin % xdx?
11. Choose the integrals that can't be expressed by elementary functions:

a) je_xzdx; b) e *dx; c) [ xe*dx; d) j%dx.

12. The antiderivative of f(X)=sin X is:

a) sSinx+C: b) —sinx+C; c) cosXx+C; d) —cosx+C.
dx

13What|sj :
X2 —4

1 —2

a)—InX—+C; b)larctg§+c;

4 |X+ 2 2

c)arcsin§+C; d)In‘x+\/x2—4‘+C?

14. Calculate [3cos xdx :

a) 3sinx+C; b) %sinx; c) —3sinx+C. d) —%X+C.

15. Find [3x°dx:
a) X2 +C: b) x> +C;: c)%x3+C; d) 6x+C.

16. What is [sec” xdx:

3

a)%sec X+C; b)tgx+C: ¢)tg’x+C:  d) 2sec® xtgx+C?

17. Compute the indefinite integral I(SXZ (2x3 —l))dx:
a) x3(x2 —1)+C; b) xs(x3—1)+C;
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C) x3(2x3—1)+C; d) x3(%x4—1j+c.

2
. : I X
18. Use integration by substitution to calculate j( jdx:

X3 +1
a) In|x3+1|+C; b) %In|x3+1|+C;
3
c)%ln|x3+1|+C; d)ijLC.
3x" +12
19. Compute [5sin” xcos xdx:
) 1 .
a) cos°® XsinX+C: b) gsm5x+C;
c) sin® xcosx+C: d) sin®>x+C.

20. Use integration by substitution to find IZSeC2 Xtgxdx :
a) tg2x+C; b) 2secx+C;
c) secxtgx+C; d) secxtg2x+C.

21. Use integration by parts to calculate fxsin Xdx :

a) —XCoSX+sinx+C; b) —XCOSX—SinX+C;
c) —XcosX+C; d) —xsinx+cosx+C.

22. What is jxln Xadx:

2 2
a)X—Inx+C; b)X—Inx—§+C;
2 2 2
2 2 2 2
c)X—Inx+X—+C; d)X—Inx—X—+C?
2 4 2 4

23. Compute the indefinite integral [(x +2)e*dx:
X+1

a) ;ex+1+C; b) xe* +C;
X+1

c) (x+1)e* +C; d) (x+2)e" +C.
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Individual tasks

Task 1. Find the integrals by substitution.

Table 4
1 2
1 |a)] (X_gﬁ b) | zzfi
dx
2 | a) [V6x—5dx & I\/(l— x? Jarcsinx
3 | a) [sin(7x—3)dx b) I;f;
4 |a) Iﬁ b)j(ex —5)11exdx
in2
« Jora )12 o
arcsin xdx
6 |a) [cos(5x+3)dx b) | 2
7 |a) I4X2di(r o b) [x33x* ~1dx
5 |1 o | o
o I(Sx(iXS)lO ] 4;2(115
x3dx
10 | a) [cos(7—x)dx b) [ Jo i
1 |a)f ﬁxx_l) ) | indxﬁ
12 |a) I\/8dxi+1 b) j(zx—1)72"dx
13 | a) [42+5xdx b) a +x2()j;(rctg3x
14 |a)] (5xdi( 7 b) [x*e* dx
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Table 4 (the end)

1 2
15 [sin(4x —1)dx b) [ X
X V3+xH0
dx 4 5
16 T
a) jm b) [ X" cosx’dx
dx X3
17 (@) | ——— -
j(X—Z)2 +1 ) Icos2 x* o
xdx
18 3x — 7 Pdx b) [———¢
) [( ) (2x2 +'E‘>)4
arctgxadx
19 |a) [33x—5dx ) |0
1+X
dx 2
20 |a X
)j(2x—1)7 b) [xe* dx
2 |a)f & 0y [eX3& 1
(3x+2)2 -4 A (el
3
22 |a) [.J1- X dx by [MXF3 g
5 xIn x
dx sin 2x
23 |a)|————— b) [ ————dx
) I(><—2)2 +4 J3’\/cosz 2X
2% arccosxdx
24 =47 dx b) | ——
A e
dx
25 |a)] > b) [x?-3/2x% —9dx
1-9x
X e”
26 11— —dx b dx
?] 4 o e’ +1
dx
27 |a [ Ey2
) o 1 d b) [xv1-5x“dx
28 | a) [+/2—xdx b) je4_5xzxdx
2
X“dx
29 |a) [e3 Hdx b) |
f V17
dx sin xdx
30 |(a)|——— b) | ———
I(5x—1)2 +7 ) j«/S—Zcosx
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Task 2. Integrate by parts.

Table 5
1 | [x?sin xdx 16 | [arccos4xdx
2 | [xarctgxdx 17 | [3*cosxdx
3 | [xIn(x—=1)dx 18 | [xe *dx
4 | [x*cosxdx 19 | [(2—3x)In 4xdx
5 | [e**sin xdx 20 | [vx% +16dx
6 | [(x+3)cosxdx 21 | [(2—=x)In xdx
7 | [x%e*dx 22 | [e*cos2xdx
8 j1/25 — 2 dx 23 j(ln x)2 dx
X
9 | [cos(Inx)dx 24 a) [e2 cosxdx
arcsinx .1
10 dx 25 xarcsin—dx
/ V14X 2 X
11| [v9+x2 dx 26 | a) [x*Inxdx
12 | [(x—1)e*dx 27 | a) [sin(In x)dx
13 Xd;( 28 |a) [In(3x—1)dx
COS~ X
arcsinx
14 | [+/x2 = 29 |a
[V x=—5dx ) | N
15 | [(x—4)sin xdx 30 | [2* cosxdx
Task 3. Find the integrals of the rational fraction.
Table 6
1 2 3
3
x° =1 10+ x
1 |a) [5———adx b) | dx
) X2 +2x+17 (X—l)(x2 +4)
3
x° =3 3x+1
2 |a dx b) | dx
: Ix2 +12x+37 (X+2)(X2 +1)
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Table 6 (continuation)

1 2 3
R Ix2 +1)é)2x+ 29 dx ) | (x—)l()&ngS)dX
o e ) o)
[0 o)
6 a)jﬁijﬂsdx b) I(X_;C)(XZM)C’X
7 |a) f% dx b) | (x _61);&25 n 5)dx
|9 ® o)
o g
10 |a) j#’jﬁmdx b) I(x +i);(;21+ 6)dx
11 |a) %dx b) j(x_f)(_)()z(+2)dx
12 |a) jXZXT’)‘(ide o) 17, _;)“(Lxg - 3)dx
2 ot Gl 3"
Al +X130t<1+ 26" V1 (x- ;)_(x); + 3)dx
s |01t R
o fﬁ;mdx Y I(x +1)(4x2 + G)dx
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Table 6 (the end)

1 2 3
17 |a) | S B PN
X2 +12X + 40 (x+1)02 +11)
7x3 -1 X+17
18 0T dx b) dx
X2 +4x+5 I(><—2)(X2+3)
x3—5 3x+7
19 |a) [————dx b) dx
: X2 +2x +10 I(X+2)(X2+2)
2 _
20 |a) 2X—+de b) | 2X 2.1 dx
X< +4x +13 (X_3)(X +4)
X2 X+2
21 |a)[———dx b) dx
) X2 +4X+5 I(X—Z)(X2+3)
X +1 1
22 AN Y b) dx
X2 42X + 2 I(X—l)(xz+5)
2 _
23 5 X~ +10 dx b) | X 2 dx
X2 +12x + 40 (x+1)(x? +9)
X2 +9 X+ 2
24 |a dx b) dx
) x% +10x + 34 I(X—7)(X2+7)
X3 2Xx+8
25 |a dx b) dx
) Ix2 +12x +37 I(2X+1)(X2 +1)
3 _
26 |a)]—, X1 ) X2 dx
X% +10x + 29 (x—6){x2 +5)
x3 2x—5
27 |a) [——dx b) dx
Ix2+2x+17 J(X—l)(xz+4)
2
28 22X +1 X b) | 8X+22 dx
X% +10x + 26 (3x—5)\x +3)
X2 + 24 7-X
29 2T dx b) dx
X2 +8X + 20 I(3)(_ 2)()(2 +1)
3
30 |a 22)(—_3dx b) | 5X+22 dx
X< +8x +17 (X_4)(X +8)
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Task 4. Find the integrals of the trigonometric function.

Table 7
1 2 3
) COS Xdx
1 | a) [sin®xcosxdx b) jm
dx
2 sin® xdx b) [——
2 ) I3—40032x
3 |a) [cosxcos6xdx b) IM
3—-4cosx
2 dx
4 |a) [ctg” xdx b) jm
5
sin® X dx
5 d b) [———
) cos® x X )I3—8cosx
dx
6 sin® xcos” xdx b) [—
2| I6—cos2 X
sin xdx
7 in* xd b
) Jsin xdx : I1—7sinx
8 |a) [sin8xsin xdx b) IL
3—4sin® x
9 |a) [ctg® xdx b) IL
J 3+5c0sx
sin X dx
10 |a) ] dx b) [————
3/cos? x I1—30052 X
11 | a) [sin xcos3xdx b) Izsm )fdx
—sinx
. 3
sin® x dx
12 dx b) [———
) Icoszx ) I3+ 2COSX
dx
13 | a) [sin?xcos® xdx b) [m
in xd
14 | a) [sin®xdx b) j%
: . dx
15 | a) [sin 7xsin 3xdx b) [——5—
3—-sin“ X
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Table 7 (the end)

1 2
d
16 | a) [tg® xdx b) I—3—4::(osx
COSX dx
17 |a) ] dx b) o oy
Jsin®x I2+3coszx
dx
18 sin® xcos® xd b) |————
a) Jsin” xcos” xdx )11+2003x
19 |a) [tg? xdx B) =
9 2 +C0s° X
20 |a) [sinxcos® xdx b) | ™
3+ C0SX
21 | a) [cos? xdx By —
2 —sin? x
dx
22 | a) [tg* xdx 0 ) o x
23 | a) [sin 2xcos3xdx b) IZS"]?&
—7sin x
., ; dx
24 | a) [sin“xcos" xdx b) Ig cOS2 X
. 5
sin° x dx
25 d b
a) Icoszx X ) I5+Zcosx
sin xdx
26 sin® xd b))
a) Jsin” xdx )12+9smx
. . dx
27 | a) [sin8xsin 6xdx b) [ ——
3+sIin“ X
4 _ dx
28 |a) [ctg” xdx b)’fm
COSX dx
29 |a)] dx S e
Usin® x I2+9c032x
dx
30 |a) [cos xdx b) I—2+53in2x
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Task 5. Find the integrals involving roots.

Table 8
1 2
32x-1 -3,
1 A x2
)Im 1 b)J. X 36 dx
NAX+1+42 o>
2 2 2
)J.l_\/m b) IX X° +25dx
V3 1
3 )j%xi_Jr4 b) [36—x? dx
V5X+1+3
4 |a) Il—)‘(‘; #dx b) [vx? +4dx
c )I3\/7x+1+2 ] \/x2—9dx
$7x+1-1 2 X
V4 7
6 ”3_\/% b) [vx? —25dx
7 )fr+j b) [x*\/36+ x* dx
IX — +2 >
8 2
).[2 m b).[ 90— x“ dx
3/4x+5-8
9 2
)IW+2 b) [ x* +16 dx
V1-2X
10 )j5_\/17J2r3 b) [x?V/16+ x? dx
VX+6 +5
11 2
fm = b) [vVx*+121dx
J9 4
12 )I8 4/9; b) [Vx* 16 dx
1- 3’\/2X+ 11)(2_1
13
Is\/2x+ -3 ax b) | X dx
V1-2x+1
14 —x2
) s b) [V4-x" d
\3 2
15 )fl )2/3)% b) [ X?V9+ x? dx
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Table 8 (the end)

1 2 3
VBx-1+1, Jo—x2
16
A S ™ b) =5~ dx
Vv1-6x+1 Vx +16
17
=S o) [T
\2 2
18 )j4 );2X+7d b) [vx?—1dx
NTX— +1 Jx2 -4
19 )f3 T2 dx b) | " dx
V4 —3x
20 d V16 — X2
)fﬂ+5 X b)j 16 —x“ dx
21 j\/_“:z b) [ x?V1+x? dx
VX +2 J1—x2
22 )I1+§/— b) | XZX dx
/ 6 [,2
23 )fg_\/% b) | XX+4dx
VX+6
24 —d 2_
a)jmﬂo X b) [VX° —9dx
- 3/3x — 1+9 Ix2 -9
”%/37 . b) | - dx
NTIX+1+2
26 V25— x2
)J‘4_m b)j 25— x“ dx
27 j\/_+jr b) [x*v4+x? dx
\/—+3 V9—x?
28 )j4+\/_ b)jgzxdx
8 N
29 a)j\/—;/_ b) | X +16dx
4/6_
30 a) I‘\l/GT—XX_,_E)dX b) I‘\/ X2—4dX
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CrtenaHoBa KatepuHa BagnmisHa

BignosiganbHun 3a BuaaHHa J1. M. Manspeup
Pepaktop 3. B. 3o0608a

Kopektop 3. B. 30608a

BuknageHo HeobXxigHWMI TEOPEeTUYHMA MaTepian 3 HaByarnbHOI OUCUMMMIHK Ta Ha-
BEOEHO TUMOBI NPUKNaaun, siKi CNpUsioTb HanMBbINbL NOBHOMY 3aCBOEHHIO MaTepiany 3 TeMu
"|HTerpanbHe YMCreHHA" Ta 3aCTOCYBaHHIO OTPMMAaHUX 3HaHb Ha NpakTuui. HaeegeHo ae-
TanbHUM ONUC Ta METOANYHI peKkoMeHaaUii A0 BUKOHAHHA 3aBAaHb A4Sl CaMOCTiNHOT pobo-
TW, Nepenik nitepaTypHUX DKepesn, TeopeTUYHi 3anMTaHHg Ta TecT Ans caMoiarHOCTUKK 3
MEeTOK BOOCKOHASIEHHS 3HaHb CTYAEHTIB 3a JaHOow TeMow. BusHavyeHo npodeciHi Kom-
NeTEHTHOCTI, SKnx HabyBaloTb CTYAEHTU B pe3ynbTaTi BUBYEHHS TEOPETUYHOrO MaTepiany
Ta BMKOHaHHSA NPaKTUYHUX 3aBAaHb 3a Lieto TEMOIO.
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