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Introduction

Series is one of the basic concepts of mathematical analysis and
mathematics in general. This branch of mathematics is of great practical
importance and is widely used in various fields of human activity.

In the guidelines, the most principal topics of numerical series are stated
in brief. The purpose of the guidelines is to consider the main definitions,
concepts, properties, theorems and formulas of numerical series theory and
to review basic methods and principles of testing numerical series for conver-
gence: a necessary condition for convergence of a numerical series; sufficient
conditions for convergence of numerical series with positive terms (d'Alem-

bert's ratio test, Cauchy's radical test, Cauchy's integral test, comparison test);
sufficient conditions for the convergence of alternating series. As a result
of elaboration of the material presented in the guidelines, the student will be
able to distinguish between the types of series and choose the methods
for testing series for convergence, investigate the convergence of numerical
series with positive and alternating terms, calculate the sum of a series.

These guidelines are intended for students and can be used for study-
ing under the guidance of a lecturer as well as independently. This material
is presented in the form of exercises and tasks for independent work, theore-
tical questions and tests for self-assessment.

1. The basic concepts of numerical series

This section is mostly devoted to notational issues as well as making
sure we can do some basic manipulations with infinite series.

First, we should note that we will refer to infinite series as simply series.
If we ever need to work with both infinite and finite series we'll be more
careful with terminology, but in most sections we'll be dealing exclusively with
infinite series and so we'll just call them series.

Let us start with a sequence {an };Ozl (note here that n=1 is for conven-

ience, it can be any other number) and define the following:
Si=a
SZ - al + a2
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S3=al+a2 +a3

n
Sp=a+a+az+a,+ag+..+a,=D.a&
“

The sequence {an }Cr’lozl is an infinite sequence of numbers &, a,, as...,

that is, there is a law according to which any member of the sequence a, can
be found by its number n. In other words, a, = f (n) is a function of a natural

argument: ne N —>a, e R.

A numerical series is an infinite sum of members of a numerical
sequence denoted as

o0
da,=a+ay+..+a,+... (2)
n=1

In expression (1) the notation a, with any number N is called the N-th

term of series; here ai,i e N are terms of series (or sometimes elements

or members of a series).
For example, consider a numerical series:

© 1
r§15n+1'

: : 1 1
where a, = is the N-th term of the series; a, =—, a; :% are

5n+1 11’
terms of the series.

The sum S, of a finite number of the first N terms is called the Nn-th
partial sum of a series:

n
Sp=a+a+ag+a,+ag+..+a,=>.a. (2)
—

Also recall that the symbol )’ is used to represent this summation and
it has a variety of names. The most common names are: series notation,
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n
summation notation, and sigma notation. In > a; the i is called the index
i=1
of summation or just index for short, and note that the letter we use to re-
present the index does not matter. So for example the following series are
all the same. The only difference is the letter we've used for the index:
x 10 x 10 x 10
_3— = 3 = 3 , etc.
i—01°+1 Kok +1 p—on°+1
It is important to note again that the index can start at whatever value
the sequence of series terms starts at.

A numeric series is called convergent if there is a finite limit

S=1lm S #x
N—o0

of its partial sums; then we write

o0 o0
Ya, =S or Y a,<w,
n=1 n=1

where the value S is called a sum of the series. The remainder of the

o0
convergent series I, = > &, =8&,1 + 8o +... tends to 0 while N — oo,
n=k+1

Otherwise, that is, if the limit of the sequence of its partial sums is equal
to infinity or does not exist at all, the numerical series is called divergent
and can be written as

o0
da, =0.
n=1

While considering a numerical series, the following two problems are
solved practically:

1) to investigate the series for convergence;

2) to find its sum if the series converges.

Example 1. Investigate the convergence of the series using the defini-
tion, and if it converges, find its sum:

X 1
nzzll n(n+1)



1 1 1 .
=———— s the Nn-th term of
nn+1) n n+l

Solution. In this example a, =

the given series. Then

1 1 1 1 1
Sp=q +ta+ag+a +..+a,=——+ + + + ..+ =
1.2 2.3 34 4.5 n(n+1)
11 t 1.t 1t _, 1
2 3 n-1 n n n+l n+1

It is obvious that the limit of sequence of partial sums of this series exists and
it is equal to 1:

lim S,,= lim 1—i =1— lim i=l, S=1imS =1#co.
N—>00 N—»00 n+1 n—woN+1 N—>00

Therefore, the series converges and its sum is equal to 1.

Example 2. Investigate the convergence of the series using the defini-
tion, and if it converges, find its sum:

z 24
2 -
h2 9n® —12n-5

Solution. Here
24

- 9n2_-12n-5

&

is the N-th term. Let us expand the N -th term of this series into partial fractions:
24 24

a, = = =|(3n+1)—-(3n-5)=6|=
" on?-12n-5 (3n+1)(3n-5) | |
_,Bne)-@n-5_ 4 4

(B3n+1)(Bn-5) 3n-5 3n+1
Thus

a__4( 11 J
" 3n-5 3n+1)



Let us find the partial sum:

Sp=q +a,+a3+a,+as+...+a,=4 1—l+l—i+£—i+
U e AR e R TRE BT
1 1 1 1 1 1
+ .t — + — + — :
3n—-11 3n-5 3n-8 3n-2 3n-5 3n+1j

Then the limit of sequence of partial sums of this series exists, and it is
equal to 5:

lim S = lim 4(1%):5, S=limS ,=5+#o.

N—00 N—00 N—»c0
Therefore, the series converges, and its sum is equal to 5.
Example 3. Investigate the convergence of the series using the defini-
tion, and if it converges, find its sum:

o0
Yaq" ! (a=0,qeR).
n=1
Solution. It is a numerical series of the geometric progression with the
denominator Q:

Y aq"t=a+aq+ag’ +..+aq’ +... (@=0,geR) 3)
n=1

As you know, for this series, the partial sums have the form:
1-q
1-q

When we find a limit at N — o0, this leads to two different situations:

n
S,=a

> if |g] <1, series (3) converges Y, ag"t=—".
n=1 1- q (4)

> if |g) =1, series (3) diverges.

Note here that the series of geometric progression is one of the im-
portant (special) series.



Example 4. Investigate the convergence of the series using the defini-
tion, and if it converges, find its sum:

S (1",
n=0

(o 0]
Solution. The series > (-1)" =1-1+1-1+... diverges. In this case
n=0

we really don't need a general formula for the partial sums to determine
the convergence of this series. Let's just write down the first few partial sums:

S, =1-1=0,

S, =1-1+1=1,

Sy =1-1+1-1=0,
S,=1-1+1-1+1=1,

S2n+1 =0,

..., etc.,
S0, it looks like the sequence of partial sums is

{Sn}._={10,1,0,10,10,..},

and this sequence diverges since lim S,, does not exist. Therefore, the
N—o0

series also diverges.
Example 5. Investigate the convergence of the series
1+1+1+1+1+1+1+... using the definition, and if it converges, find its sum.

Solution. This series diverges, as S, =n and lim S,=limn=co,
N—o0 N—o0

We'll leave this section with an important warning about terminology. Do
not get sequences and series confused! A sequence is a list of numbers
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written in a specific order while an infinite series is a limit of a sequence of
finite series and hence, if it exists it will be a single value.

2. The properties of numerical series

We'll start off with basic arithmetic with infinite series as we'll need to be
able to do that on occasion. We have the following properties.
1. The series

>.a, and Y 1a, (1eR, A%0)

n=1 n=1

o0
either simultaneously converge or simultaneously diverge. And if > a, =S,
n=1

S Aa, =AS.
n=1
2. If

Zan=31, an=52
n=1 n=1

are both convergent series,

Zan T an :Z(an ibn)
n=1

n=1 n=1

is also convergent and the sum is equal to S; = S,.
3. The series

(e8] o0

Y.a, and > a, (k>1)

n=1 n=k+1
either simultaneously converge or simultaneously diverge, that is, rejecting
or joining a finite number of members of the series does not affect its conver-
gence.

The first property is simply telling us that we can always factor a multi-
plicative constant out of an infinite series. Recall that an initial value of the
index of the series can start at any value.

The second property says that if we add/subtract series, all we really
need to do is add/subtract the series terms. Note as well that in order to
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add/subtract series we need to make sure that both have the same initial
value of the index and the new series will also start at this value.

Let's briefly discuss multiplication of series. We'll start with
(Z anj'(z bn);é Z (an 'bn)-
n=0 n=0 n=0

To make sure that this is true, consider the following product of two
finite sums:

(2+x)(3—5x+x2):6—7x—3x2 +x°

It was just the multiplication of two polynomials. Each is a finite sum and so
it makes the point. In doing the multiplication we do not just first multiply the
constant terms, then the X terms, and so on. Instead we have to multiply 2
by each team of the second polynomial, then multiply X by each team of
the second polynomial and finally combine the similar terms.

Multiplying infinite series needs to be done in the same manner. Multi-
plication implies the following:

(ianj-(ibnjz(a0+a1+a2+a3+a4+...)-(b0+bl+b2+b3+b4+...).
n=0 n=0

To do this multiplication we would have to distribute first a;, then g

through the second term, etc., then combine the similar terms. This is pretty
much impossible since both series have an infinite set of terms in them, how-
ever the following formula can be used to determine the product of two series:

(ianj'(ibnjz icn’
n=0 n=0 n=0

n
where C, = > & -b,_;.
i=0

Neither can we say much about the convergence of the product. Even
if both of the original series are convergent, it is possible for the product to be
divergent. The reality is that multiplication of series is a somewhat difficult
process and in general is avoided if possible.
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3. The strategy for series

Note that here we give a general set of guidelines for examining series
for convergence. For some series, more than one test can be applied. That
Is why you should always go completely through the guidelines and identify
all possible tests that can be used for a given series. Once this has been
done, you can identify the test that you feel will be the easiest for you to use.

3.1. The necessary condition for a series convergence

So, we have considered several series in the first section. Recall here
that two of the series (examples 1 and 2) converged, two diverged (examples
4 and 5) and the convergence or divergence of one series depended on
the parameter (example 3). Let us go back and examine the series terms for
each of these. For each of the series let's take the limit as n going to infinity
of the series general terms (not the partial sums!).

e lima,=Ilim =0, this series converged.
N—o0 N—>c0 n(n +1)

i i 24
e lima,=Ilim— -
N—>00 n—o9n® -12n-5
About special series:

0, this series converged.

Saq"t=a+aq+ag® +..+aq’ +.. (a=0,qeR),
|

where
e a, = aqn_l, a#0,qgeR aswe have known that
o N1 a
if |g| <1, the series converges, and ».aq" ~ = ﬂ
n=1 -

if |g| > 1, this series diverges.

o lim a, = lim (—1)"does not exist, this series diverged.
N—o0 N—o0

And, finally,
e lima,=Iliml=1, this series diverged.
Nn—o0 Nn—oo
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Notice that for the two series that converged the series term itself was zero
in the limit. This will always be true for convergent series and leads to the fol-
lowing theorem.

o0
Theorem. If > a, converges, then
n=1

lim a, = 0. (5)

Nn—oo

Corollary. If condition (5) is not satisfied, the series diverges, namely: if

o0
lim a, =0, the series ) a, diverges (in literature this condition is some-
N—o0 n=1

times called the divergence test). Otherwise, if im a, =0, the series can
n—oo

either converge or diverge.
It is the corollary of the theorem that is usually used in the practical
study of series for convergence.

3.2. Sufficient conditions for convergence of series
with positive terms

Let's consider a general set of guidelines to help us determine the con-

o0
vergence of the series ) a, with positive: ¥YneNa, >0. But note here
n=1

that, due to the first property of series, they can also be applied to series
with negative terms.

o0

Theorem. (The ratio test or d'Alembert's test.) Let for the series ) a,

n=1
(a, > 0) there is a limit
. da
| = lim =0+l (6)
n—oo &,
Then,
> if | <1, the series converges; @

> if | >1, the series diverges.
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It is important to remember: at | =1 d'Alembert's test is inapplicable.
In this case it is necessary to apply some other test.

It is recommended to use the d'Alembert's test if there are exponential
or/and factorial functions in the formula of the general term.

Theorem. (The Cauchy radical test.) Assume that for a series with

o0
nonnegative terms > a, (a, >0) there exists
n=1

| = lim Ya,. (8)
N—o0

Then,
> if | <1, the series converges;

(9)

> if | >1, the series diverges.

It is important to remember: at | =1 the Cauchy test is inapplicable;
it is necessary to apply some other test.

It is recommended to use the Cauchy radical test if there is a degree n
in the formula of a general term of a series.

o0
Theorem. (The Cauchy integral test.) Let's assume we have . a, .
n=1

Suppose that f (x) is a positive decreasing function on the interval X e [1;+c0)
and that a,, = f(n).
Then,

o0 e e}
> if [ f(x)dx is convergent, the series Y a, also converges;
1 n=1
o0 o0
> if [ f(x)dx is divergent, the series Y a, also diverges.
1 n=1

o0 o0
That is, the series ) &, and the improper integral j f(x)dx are simultane-

n=1 1
ously either convergent or divergent.
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Example 6. Using the Cauchy integral test, investigate the convergence
of the harmonic series (or Dirichlet series):

1
2— (p>0). (10)
n=1N
Solution.
Let us consider the corresponding integral:
b
) ) b
X _ : _ : 1 _
jd—zjx Pdx = lim [x~Pdx = lim [—xl pj =
1 L >1
—im (P -1)=| p-1' P
b—w]l— p o, D <1
In case p =1, we have
0 b
X . X .
d—: lim d—: lim Inb=c0.

1 X b—>oo1 X bh—w

Thus, as a result of the study of the convergence of the Dirichlet series,
we obtained the following result:
© 1
> if p>1,the series )| - converges;

n=1N (11)

© 1
> if p<1,the series Y — diverges.
n=1nP

Theorem. (The comparison test.) Suppose that we have two series

e} o0
Y.a,and ) by, . Let the terms of this series be such that 0 < a, <b,,.
n=1 n=1

Then,

e} o0
> if D b, is convergent, the series ) a, also converges;
n=1 n=1

o0 o0
> if Y a, isdivergent, the series ) b, also diverges.
n=1 n=1

14



o0
In other words, from the convergence of the series > b, the convergence
n=1

e e}
of the series ) a, follows, and vice versa, from the divergence of the series
n=1

o0 e}
Y. a, the divergence of the series )b, follows.
n=1 n=1

o0
Theorem. (The limit comparison test.) Let the terms of the series )’ a,
n=1

(0.0]
. da
and > b, be nonnegative and there exists lim —~=1, [ #0, | #o0, then
n=1 N—o0 bn

o0 o0
both series ) a, and ) b, converge or diverge simultaneously.
n=1 n=1

In practice we use as comparison standards (or special series), for
example, series (3) and (10), whose conditions of convergence are known
(see (4) and (11) accordingly).

3.3. Alternating series. Absolute and conditional convergence

An alternating series is a series with the terms which are real numbers
of any sign.
For example,

n(n-1)
1 1. 1 i+i—i—i+...+(—1) 2 4.

+
12 22 32 42 52 62 72 n2

An alternating series is called alternating in sign if any of its two
neighbouring terms have different signs, i.e. series like

S(D)"a, o X(-D"a, (a,>0). (12)
n=1 n=1

15



An alternating series is called absolutely converging if the series

o0 e8]
Y| ay| converges, namely: 3" |a,| < .
n=1 n=1
An alternating series is called conditionally converging if the series

o0 o0

> a, converges and the series Y |a,| diverges.
n=1 n=1
o0 o0
Theorem. If the series Y |a,| converges, the alternating series . a,
n=1 n=1

also converges.

Theorem. (Leibniz criterion.) If the elements {an };O:l of an alternating

series (12) form a monotonically decreasing sequence which tends to zero,
ie. if:

1) im a, =0;
N—o0

2) a, > an.1, VN,
the series converges. Moreover, its sum is positive and less than the first
term of the series: 0<S <g.

Series for which the Leibniz criterion is satisfied are called Leibniz-type
series.

Corollary. For Leibniz-type series the absolute value of the remainder
I, is less than the absolute value of its first term:

‘S_Sn‘:‘rn‘saml’ (13)
where
r=C)"a,, + ()" Pa, ...
So, with that said here is a set of guidelines for determining the conver-
gence of a series.

1. With a quick glance, does it look like the series terms don't converge
to zero in the limit, i.e. does

lima, #0?
N—o0
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If so, use the divergence test. Note that you should only do the diver-
gence test if a quick glance suggests that the series terms may not converge
to zero in the limit.

2. Is the series a p-series

© 1
Z—p (p>0)
n=1N

or a geometric series

S aq" or Y ag"?t (a=0,qeR)?
n=0 n=1

If so, use the fact that p-series will only converge if p >1 and geometric
series will only converge if |g| <1. Remember as well that often some alge-

braic manipulation is required to get a geometric series into the correct form.

3. Is the series similar to a p-series or a geometric series? If so, try the
comparison test.

4. Is the series a rational expression involving only polynomials or poly-
nomials under radicals (i.e. a fraction involving only polynomials or polyno-
mials under radicals)? If so, try the comparison test and/or the limit compari-
son test. Remember however, that in order to use the comparison test and
the limit comparison test the series terms all need to be positive.

5. Does the series contain factorials or constants raised to powers in-
volving n? If so, the ratio test may work. Note that if the series term contains
a factorial, the only test that we've got that will work is the ratio test.

6. Can the series terms be written in the form

(-D"a, or (-D)"a, (a,>0)?

If so, the alternating series test may work.
7. Can the series terms be written in the form

an = (bn)n?

If so, the root test may work.
o0

8. If a, = f(n) for some positive decreasing function and j f (X)dx
C

IS easy to evaluate, the integral test may work.
Again, remember that these are only a set of guidelines and not a set
of hard and fast rules to use when trying to determine the best test to use on
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a series. If more than one test can be used, try to use the test that will be
the easiest for you to use and remember that what is easy for someone else
may not be easy for you!

Theoretical questions for self-assessment

1. Expand the content of the concept of numerical series.

2. Describe the properties of numerical series.

3. What is the necessary condition for convergence of series?

4. How do you understand the phrase "series with positive terms"?

5. What sufficient conditions for convergence of series with positive
terms do you know?

6. Give some examples of special series. Why are they called special?
How are they used?

7. What is the essence of the comparison test?

8. Formulate d'Alembert's test, Cauchy radical test, integral test for con-
vergence of series.

9. Give examples of general terms of a series matching each sufficient test.

10. Explain the concept of alternating series.

11. What is the content of the Leibniz criterion?

12. Give a definition of absolute and conditional convergence of series.

13. Give examples of absolutely converging series.

14. Give examples of conditionally converging series.

Test for self-assessment

1. What is the twenty-first term of the sequence given by X, =4n—3:
a) 6; b) 72; c) 81; d) 877
2. If n is a natural number, what is the sixth term of the sequence given

by X, =4-(0,5)":

a) 0.0625; b) 0.125; c) 1; d) 64?
1 n-1
3. What is the fifth term of the sequence a,, = (—j
n
a)l; b)i; c) 2 d)i’?
5 25 125 625



4. For the sequence defined by a, = n? —5n+ 2, what is the smallest

value of n for which a,, is positive:

a) 3; b) 4; c) 5; d) 67

5. The n-th hexagonal number is given by h, =n(2n—-1). What is the
sixth hexagonal number:

a) 17; b) 22; Cc) 66; d) 1507

6. The n-th term of a sequence is given by X, =3n?% —1. Which term of
the sequence is equal to 866:

a) the fifteenth term; b) the sixteenth term;
c) the seventeenth term. d) the twentieth term?
2
7. The n-th term of a sequence is given by X, = c Which term of the
n+
sequence is equal to 4:
a) the third term; b) the seventh term;
c) the eighth term; d) the tenth term?

8. What is the partial sum of the squares of the first eight natural
numbers:

a) 64; b) 140; c) 204; d) 12967

9. The partial sums of the first n and n+1 numbers of the Fibonacci
sequence are both divisible by 11. What is the smallest value of n for which
this is true:

a) n=11; b) n=10; c)n=9; d) n=87?

10. What is the value of i 5k :

a) 150; b) 250; - c) 500; d) 7507
11. What is the value of 1201 K(k - (k +1):

a) 2640; b) 2970l?:1 c) 3025; d) 30807
12. What is the value of 122: k2(k -3):

a) 234; b) 4134k;:1 c) 51009; d) 80347
13. What is the sum of the whole numbers from 10 to 100 inclusive:

a) 4 939; b) 4 995; c) 5 005; d) 5 050?
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14. What is the sum of the whole numbers from 12 to 20 inclusive:

a) 39 744; b) 38 016; c) 37 566; d) 35 3887

15. The partial sum of the first N natural numbers is given by the formula:
n

n
K =%n(n +1). If > k =496, what is the value of n:

k=1 k=1
a) n=31; b) n=32; c) n=33; d) n=123257
16. The partial sum of the first N natural numbers is given by the formula:

n n

> k? = %n(n +1)(2n+1).1f >’ k? =130n, what is the value of n:

k=1 k=1
a) n=13; b) n=18; c) n=19; d) n=267?

100

17. Evaluate ) i=1+2+3+...+98+99+100:
i=1

a) 5000 = 50-100; b) 4950 = 99-100

100-101

¢) 5050 = ; d) 2500 =50-50.

L K24k
18. Let S, =Y (-)* ™ then S, =:
k=1
a) undefined; b) n;
c) 1, d) O or 1 depending on the value of N ?

n
19. Let S, = > k? . Which of the following is not equal to Sg :

k=1
2 2114, b) S; — 7%
6
c) Sg +6°; d) 917
20. If the series )| N converges, find alz, and if it diverges, find aﬁ:
n=1 n-+ 2
1
a) 1; b) —;
) ) 3

c) d) nothing can be said about this series.

1
9
20



21. If arcct
Zl g 44+n

a) 1; b) 7 ;
c) 0.257x; d) diverges.

22. If Z(Zn—
n=1\ 9N —

converges, find its second term:

converges, find its first term:

2n
j diverges, find its first term, but if the given series

1

1; e

) ®) 1206
) 1. ) 1
36" 99"

23. For which series is the necessary condition for convergence not
fulfilled:

© 3n+1 © 2

a) D, ; b) > :
o0 o0 2

0) LI gy 2",

rz'lﬂ/n(n+1)’ n=1(3n—1)2

24. For which series is the necessary condition for convergence satis-
fied and in order to establish the convergence or divergence of the series,
what additional research is needed:

= n > 3n-1
a)nzﬂ\/ﬁ(n"‘z)’ )21 7’

S 3. i n+3
c) nZ:ln smn3, d) Z(n+1)

Correct answers with explanations for the test

lc
Solution. To find the twenty-first term, replace n by 21: therefore

21



2a
Solution. To find the sixth term, replace n by 6: therefore

xg =4-(0.5)° =4-0.015625 = 0.0625.

3d
Solution. To find the fifth term, replace n with 5. Therefore

SR BT

4c
Solution.

a=1-5x1+2=1-5+2=-2<0;

a,=2°-5x2+2=4-10+2= -4 < 0;
ag=3°-5x3+2=9-15+2= -4 < 0;
a,=4°-5x4+2=16-20+2=-2<0;
as= 5°-5x5+2=25-25+2=2>0.

Therefore the smallest value of n for which a, is positive is N =35.
5cC
Solution. To find the sixth hexagonal number, replace n with 6. There-

fore hg= 6(2 x 6 — 1) = 6(12 — 1) = 6 x 11 = 66.

6cC
Solution. If X, = 866,
= 3n°—1 = 866;

= 3n°= 866 + 1 = 867:
- n’= 867:3 = 289;

= n=+/289 =17.

Therefore the seventeenth term is equal to 866.
7b

Solution. If X, =4,

2

n 1:4;
n+5
= n?-1=4(n+5);

=

22



= n®—-1=4n+20:
- n?—4n-21=0.

That guadratic equation can be factored into: (n—7)(n+3) =0, which

has solutions N=7, or N=—-3 = N=7 since n cannot be negative.
So, the seventh term is equal to 4.

8c
Solution.
1% =1;
22 = 4;
32 =09;
4% =16
52 = 25:
62 =36;
7% = 49;
82 =64.

Therefore the partial sum of squares of the first eight natural numbers

isl+4+9+16+ 25+ 36 + 49 + 64 = 204.
9b
Solution. These are the first few terms of the Fibonacci sequence:
0,11 2 35, 8, 13, 21, 34, 55,...
The partial sum of the first term = 0.
The partial sum of the firsttwo terms = 0 + 1 = 1.
The partial sum of the first threeterms = 0 + 1 + 1 = 2.
The partial sum of the first fourterms = 0 + 1 + 1 + 2 = 4.
The partial sum of the first fiveterms = 0 + 1 + 1+ 2 + 3 = 7.
The partial sum of the firstsixterm = 0 + 1+ 1+ 2 + 3 + 5 = 12.

The partial sum of the firstseventerms = 0 + 1 + 1 + 2 + 3 + 5 + 8 =

= 20.

The partial sum of the first eightterms = 0 + 1 + 1+ 2 + 3 + 5 + 8 +

+13 = 33.

The partial sum of the first nineterms = 0 +1+1+ 2+ 3+ 5+ 8+

+13 + 21 = 54.
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The partial sum of the firsttenterms = 0 +1+1+ 2 + 3 +5 + 8 +

+13 + 21 + 34 = 88.

The partial sum of the first eleventerms = 0 + 1 +1+ 2 + 3 + 5 +
+8 + 13 + 21 + 34 + 55 = 143.

33 is divisible by 11, but 54 is not. Then 88 and 143 are both divisible by 11.
So, n=10 is the smallest value of n for which the sums of the first n and
n-+1 numbers are both divisible by 11.

10 a
Solution. Use the formula
n
3 K2 n(n+1)(2n+1) |
k=1 6
2 re2 g 1
Therefore ) 5k =5> k“=5-=-4.5.-9=5-30=150.
k=1 k=1 6
11b
Solution.
10 0 10 10 10
Sk(k-D)k+1) =S kk*-1)=0k*-k=>k>- k.
k=1 k=1 k=1 k=1 k=1

n 2 n
Use the formulae 3 k> = (n(n +1)j and > k :En(n +1).
k=1 2 ka2
10 10 112
Therefore > k*— k= (10 11) +%-10-1l= 3025—-55=2970.
k=1 k=1

12 b
Solution.

12 ) 12 ) 12 12 5
S kik-3)=Y k3-3k? =S k*-33 k?.
k=1 k=1 k=1 k=1

n 3 n(n—+1) 2 n 7 1
Use the formulae > K :( j and > k“==n(n+1)(2n+1).
k=L 2 k=1 6

12 12 12)2
Then > k*-33 kzz(lz 13) —3%-12-13-25=6084—1950:4134.
k=1 k=1
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13 c

Solution. To find the sum from 10 to 100 inclusive, we find the differ-
ence between the sum of the whole numbers from 1 to 100 and the sum of
the whole numbers from 1 to 9. (This is 9, not 10, because 10 must be in-
cluded in the answer). Use the formula

N n(n+1)
> k=10,
k=1
100 100 9 , ,
Then 3 k=3 k-3 k=100101 910 _ 550 45-5005.
k=10 k=l k=1 2 2
14 a

Solution. To find the sum from 12 to 20 inclusive, we find the difference
between the sum of the cube numbers from 1 to 20 and the sum of the cube
numbers from 1 to 11. (This is 11, not 12, because 12° must be included in
the answer).

Use the formula

Then

2
z k3 = z k3 - sz (20 21) (%J = 44100 — 4356 = 39744
k=12 k=12 2 2

15a

Solution.
n

>k ——n(n+1) and Zk 496.
k=1 k=1

:%n(n+1):496;
=>n(n+1)=992;

= n2+n:992;

= n®+n—-992=0.
That quadratic equation can be factored into: = (n—31)(n+32) =0;
= n =31 since n must be a positive number.
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16 c
Solution.

n 5 1 n 5
> ke==n(n+1)(2n+1) and > k“=130n.
ket © k=1

:% n(n+1)(2n+1) =130n;

:% n(n+1)(2n+1) =130n since n#0;

= (n+1)(2n+1) =780;
= 2n° +3n+1=780;

= 2n% +41n—-38n—779=0;

= n(2n+41)-19(2n+41) =0;

= (n-19)(2n+41) =0;

= N =19 since n must be a whole number.

17 c
Solution. Using the formula
. n(n+1)
RIS
i=1
with n =100, we have
100 ,
Y= 100-101 =5050.

i=1

18 b
Solution. Note that for any natural number k, the exponent

k?+k = k(k +1) is an even number since it is the product of an even num-

k2 +k

ber and an odd number. Thus (-1) =1, so

n k2 K n
EDC T =31=1+1+...+1+1=n.

k=1 k=1 n summands of 1
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19 a
Solution. The general formula for the sum of the squares of the first n
positive integers is

N> nn+1)(2n+1
12422432440 =Yi%= (n+1)( ).

= 6
This problem asks about Sg, which is this sum with n=6. Substituting

this value of N into the formula gives

6 7.
Sg =12 +22+3% +42 45 162 =Y i% = 0 7613.
i=1

This problem asks which answer choice is not equal to Sg. One of the

choices for the answer is

6-7-14
5
Comparing this to the value of Sg we found, we see that
6-7-14
Sg # ,
6
6-7-14
SO, is the correct answer.
20 a
1
Solution. Let us compare this series with the Dirichlet series > —.
n=1VN
n 1 . L : : :
As , and the Dirichlet series diverges, this series also diverges.

2 in

Then, af :E =1.
16
21 d

5
Solution. As a,, = arcctg 4— let us check the necessary condition (5)
+Nn

for the convergence of the series. For this purpose we calculate the limit:

. 5 :
lim arcctg—— = lim arccth:z;tO.
n—o0 44N now 2
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Since the limit of the general term of the series is not equal to zero
(lim a, # 0), the necessary condition (5) of convergence is not fulfilled, then
N—o0

the given series Z arcctg i diverges.
n=1 4+n

22 b
Solution. A general term of this series has n-th degrees, therefore let us
use the Cauchy radical test. To do this, we calculate the limit (8):

2n 2 2
= tim gfay = lim g 2272 = gim[ 2273} im 2 <1,
N—>00 n—ow \(\ SN —4 n—o\ 5N —4 n—w 5

2n 4
X — 4— 1
Then the given series Z[Zﬂ 3) converges. So, a, = (_3j =

23a,c,d
Solution. The following corollary of the theorem is usually used in the

o0
practical test of series for convergence: if lim a, =0, the series ) a, di-
N—00 n=1

verges. Otherwise, if im a,, =0, the series can either converge or diverge.
N—o0
The necessary condition for a series convergence is not fulfilled for

the series:

) 33 s im a, = fim N =340,
n=14n+5 n—>co n—o 4n

e 0]

c) ZL since lim a, = im —1— =10
n=1\/n(n +1) n—oo n n—)oo\/? ,
0 2 2

d) ZLZ because lim a, = lim 2%:87&0.
n=1(3n—1) N> = noo3n® 3
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24 a
Solution. The following corollary of the theorem is usually used in the

o0
practical test of series for convergence: if lim a, #0, the series > a, di-

verges. Otherwise, if im a,, =0, the series can either converge or diverge.
N—o0

The necessary condition for a series convergence is satisfied for
1

©  3n . . nd3 1
a) ) ————

as Im a, = Im —=—=0.
nzlJﬁ(n+2) n—o0 n—oo § Z
2 2
n n
In order to establish the convergence or divergence of the series, additional
research is needed. Let us consider the variants:

) . 3n 3
im a, = lim —=—==0;
n—o0 n—oo /N
c) Zn?’sin%: lim a, = lim n3i3_1¢0;
n—oo n—oo n
d) Z n+3)’ : lima, = lim n+s3 _‘1‘”‘:
+1 N—>00 N—>00 n+1
2n
N+l n4t
| 2 \" 2N, | A
= lim{1+— | =Ilim||1+— = limentl =¢“ 20,
n—oo n+1 n—o0 n+1 n—oo

Solution of typical example tasks of a test paper

In this section we consider how to apply different techniques of investi-
gation for numerical series, which will help in solving typical tasks of an inde-
pendent test paper.

o0
Task 1. Test the numerical series > a,, for convergence, if the general

n=1
term a,, of this series has the form:
3 2
n”+33 n“+1
a) a, = arcctg b) a, =——;
n?+22 (2n-1)!
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n2
o)a, = (”_*3) ; d) a, = nvn

n+1 50n° —12n+1’
e) a, = :
(n+1)In(n+1)
Solution.
n3
+33
a) arcctg
% n?4+22

Let us check the necessary condition (5) for the convergence of the
series. For this purpose we calculate the limit:
n’ +33 n® s
lim arcctg 2 = lim arcctg— = lim arcctgn=—#0.
n—c0 +22 noo n n—o0 2

Since the limit of the general term of the series is not equal to zero

(lim a, #0), the necessary condition (5) of convergence is not fulfilled;
N—o0

o 2
n
then the given series Z arcctg diverges.
© n?+1
? 2 -1y

As the formula of the general term contains a factorial, we use d'Alem-
bert test. For this purpose we calculate the limit (6):
| i Bnsl _ (n+1)*+1 (2n-1)! =‘f‘=
n>wo a,  now(2(N+1)-1)! n?4+1
n (2n-1)!

= Im — - lim
n—on® n-w(2n-1)2n- (2n+1) n—>004n +2n

‘—‘ 0<1.

Since | <1, we conclude that the given series converges.

3\
L in+
c)Z(—j
o\ n+1
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The general term of this series has an n-th degree, therefore let us use
the Cauchy radical test. To do this, we calculate the limit (8):

2
) ) n+3)" ] n+3)\"
| = lim "Ya, = lim 0| —— =lim|—| =01%|=
N L o (n+1) n—>oo(n+1) ‘ ‘

an
n+1 n+1 on

2 \" 2 )2 L a2
=Iim{l+—| =lm||1+— = |im el =¢° >1.

n—o0 n+1 n—oo n+1 n—o0

As | > 1, the given series diverges.

nn

50n3 —12n+1

We apply the limiting form of the comparison test. Firstly, find an appro-
priate series for comparison. For this purpose it is necessary to preserve
senior degrees without numerical coefficients in the formula of the general

term:
B n\/ﬁ _ n\/ﬁ_ 1 b
& = 3 3~ 327 N
50n°-12n+1 n n
1
As a series for comparison, choose the Dirichlet series Zb = Z 377
n=1 n=1N
. . 3
which according to (11) converges, as p = 5 >1.
Let us calculate the limit:
3/2
a, nyn n
| = lim 2= lim Jn =
N—>o0 bn n>050n° —12n+1 1
‘ 1
= lim =|— =—.
n—»50n° —12n +1 n—>oo 50n 50
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It is obvious that | #0, | #00, then according to the comparison test both

o0 o0
series Y. a, and . b, converge or diverge simultaneously. The given series
n=1 n=1

1
converges, because the Dirichlet series Z 3/2 converges.
n=1N

1
©) Z_ll(n +1)In(n+1)

Consider the function that specifies the general term of the series:

1
f(n):(n+1)ln(n+1)'

It satisfies all the conditions of the corresponding theorem: it is positive
and decreases monotonically. Therefore, the Cauchy integral test can be ap-
plied. To do this, we consider a definite improper integral of the first kind and
test it for convergence:

(o= (x +1)Cllr)1((x+1) OOdI(rI:E(xX:l;»
1 1 1
0 d (In( x +1))

= lim |

—h b —

= lim IN[In( b+2)]—-InIn2=c0.
b—w

Since the limit is infinite, the considered improper integral of the first kind
diverges, and therefore, according to the Cauchy integral, the original series
also diverges.

2

© n? 41
Answer: a arct < 00;
)nz1 g n+2 ) nz1(2n 1)!

)Z(“?’j:oo; P L LLI

n+1 o150 —2n+1

1
©) Z_ll(n +1)In(n+1)

32



o0
Task 2. Test the following series > (-1)"a, for absolute and condi-

n=1
tional convergence, if a, has the form:
1
8 = :
n’+7n-1

Solution. So, we must test the alternating series:
2 (=D)°

S(D)'ay =3 .
n=1 " n=13\/n2+7n—1

First, consider the series of absolute values:
ol (D" e 1
5 |

=2
n=1/3/n? + 7n —l‘

=13 n2 +7/n-1

It is clear that
1

1 1
an: ~ = =
In2+7n-1 3Ynz n*?

So, in order to test the convergence of the series of absolute values we use
the comparison test with the Dirichlet series:

b, .

2
Here p = 5 <1 that is, according to (11) we conclude that the series diverges.
Let us verify the conditions of Leibniz's theorem. Indeed,

] 1
1) lim =0;
n—>°°'%)/n2+7n—1

1 1 1
2) > > > ...,
37~ 317 " 3/29
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o0

Therefore, the series Z a, converges according to Leibniz's theorem.
n=1

But since the terms of the series

o0
n=1 " n=1 «3/n2 +7n-1 n=1 " n=1 nP n=1 n2/3

are nonnegative and there exists

n

. a .
| = lim -2 = lim =1, 1#0, | 00,

1
n—>oby N2 71

both series either converge or diverge simultaneously.

o0
The series of absolute values Y, | an| diverges on the basis of the limit
n=1
comparison test. Thus, there is no absolute convergence. The given alter-
nating series is conditionally converging.

o0 _n\n
Answer: > (=)

n—13/n? +7n—1

Is conditionally converging.

Individual tasks

o0
Task 1. Test the numerical series ) a,, for convergence, if the general

n=1
term a,, of this series has the form:
: n-3 n++/n
Variant 1. a) a, =arcctg ——; b) a, = \/_;
n+2 7"
-n
27n* 3n+1
c)a,=| ———| d) 8y =——5———;
6n“ +n 5n° —2n
) 1
e) a, = :
" n(4+Inhn)°
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Variant 2.

Variant 3.

Variant 4.

Variant 5.

Variant 6.

. (T
a) a, =S|n(§+7znj;

o =(n[+ 2]

1

e) a, =

a)a, = n®+1 _
" 3n2in+2’

c)a, = (arctg

2n? +3
1
a,=———.
©) @ n(in n+9)
8n? +1
a)a, =3————:
) 2 n%+5n-1
—-N
c)a. =| cos :
)8 ( 3n+2j
1

1
d, = .
®) 8 n(In®n+5)
a)anz%;

35

(n? +1)arctg>n’

1.)"

b) an_(nz)

0 _2ndn+1
3% +n

|

b) = ——;
100

d) a, = :

) Jn+uJ_+®
en

b) an_ﬁs

~2n4n

9 & n°°—n?+6
6
n"+4n+7

b) an: 2n

d) a, = n+1 _
Jn +2n +5’
n-+1)!

b) an_(nloo)



Variant 7.

Variant 8.

Variant 9.

Variant 10.

1 n
c)a, = (arccos (l+ HD :

1
e)a, =—————.
" nJinn+1
1
a) a, =arccos —;
N
2
0a _(Bn—ljn |
" 3n+5)
e) a, = L
" nin(4n)’

2n
a) aj :(1+£) ;

n
c)a, =(Inv/n+6)";
1

e) a

T
a) a, =Cc0S——;

n+1’
n
(5n+2j2
c)a, = :
dn+1
1
e) a

" n(nn+1)3

B n’ +on-1
100n% +1

n2
0a :(n+1j _
" {n+2)

36

a) a,

"~ (n2 +Darctg’n’

d) a _n2+2n_
" o3t
n
P 8 = oo
4/n +n
d) 8, =—5
3n° +2
2
b) an:tgs_n;
2
n-arctg(n+1)
d) a, = ;
" NS +5
2
n- +3n
b) a, = o
L1

d) a, =

1 .
T J2n(/n+3n)’

1
b)an:smz—n,
d) a _3\/n+1_

" 3n2_1’



Variant 11.

Variant 12.

Variant 13.

Variant 14.

e) a

" hin(3n)”

Yn? +

4n +

1 -n
Qanz(wtam(—)j ;
n

1
a, = .
" n(nn+3)?

|

a) a, =

:

a)a _arctgw-
n n+1
o)a. = n®+3 n_
" Vlan2-1)
1
e) a, = :
" (m2n+an
1
a) a, =nsin —;
n
. _(n+1j 3n
" {2n-1
1

- 2n
Cﬁ“:@%$n+J);

B 1
“n@nn+3)%

e) a,

37

b) a, = (n*+2)e™";

.1
d) a, =(n+1)sin ;
" n®+5

10"
P =
2n +1
d) a, =
" 3n%_4n
b) a. = nd+3 _
" @n+D)!
D a — Jn+1 _
) n_\/n4+3n2—1’



Variant 15. a) a. =t _
) 8 g4n+9 b) & nl
2n+1)" 2n° +3
C = d n - 2 2 a
" 2n+3 (n“ +1)
e) a, = 1
" (71n n+1)2n'
n+3
Variant 16. — n-+l. b) a, =
a) a.n (1,01) , n 2n (n_lo)
2 n
1
C)anZ(znz +1] ; d) a, =—;
3n+5 Inn
e) a, = L
" nin(5n)°
_ n" _n+4
Variant 17. a) a, :ﬂ; b) a, = 2n+1n ;
n? 1
ga. = ML d) a, = :
Tl ones ) (n+3)(n+5)
1
e) a, = :
nBINn+7)
. 4" n"
Variant 18. a) a, = ; b) a. =—
T2 +1)? )=
2
n+1 )" | d) a. = n+2
C)an=(2n_4) : " 3(n* +1)
) 1
e) a, = .
" (n® +arctgn
n n
Variant 19. a) a, = (2,5)”“; b) a, = 3 +2
n!
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Variant 20.

Variant 21.

Variant 22.

Variant 23

n2
0)a _(2n+5j _
" 2+n)

e) a, = !

" (In2n+1)n'
a) a = 2n° +1

" 5n2-3’

I’l2
2n+2
©)an = -1,

e) a

a)a

1
(3In n+2)4n'

1 n
o=(1+3)

n =

2

n+2 \"
c)a, = ;
10n+5

e) a

a)a

1
" n@hn+3)

B n\V4n? +1

" Bp2_3

2

n
n+1
©)an :(2n+5j ;

e) a

1

" :n\/1+ln2n'

39

_arctgyn® -1
2 )

d) a,
Jn% +n
n
b) an=3—n,
Inn
d) an:%ﬁ;
_n2+l
b) a, = o
7n% +n
d) a, = 7]
n"+5n+16
n!
b) an:5—n,




Variant 24.

Variant 25.

Variant 26.

Variant 27.

n? —5n+4
3
(4n+7j”
C n=
5n+9
1
e) a, = :
" (Inn+3)3n

a) a, = (gj\/ﬁ,
8
C)an:(zm?,j“;
on-1
1
n(inn+2)

e) a, =

n+2
a) a, = arcctg—s;

o (n(35))

1
a =———:
®) & nd/Inn+1

n®+2n+3
A) 8y =

40

__9n2—3n
n2
b) a, 23—n;
3
n-—8
D an = 3 2
Jn +3n° +2
nn
b) a, = :
) 2 2"n!

0 a - 1In(n+lj-
"dn ln-1)

Jnsn

b) a, =

6n
5n+4
d) an = 2 ;
n°-3n+1
4n
b) a, = 3nn2



1
e) a, =
nin(2n)
1 on
Variant 28. a) a, :(_4.1} ;
n

c)a, =(InV/n+5)"";
1

e) a, =

Variant 29. a) a, = COSL;
n+2
n
0a _(2n+5j2_
" {n+a )’
e) a, = L
" (Inn+3)2n'
2
Variant 30. a) an—n +N-5
20n% +7
0 _(n+4jn
" \n-3
) 1
e)a,=———.
" nv4+Inn

o0
Task 2. Test the following series > (-1)"a, for absolute and condi-

n=1
tional convergence, if a,, has the form:

41

(n? +1)arctg®n’

n+5\/ﬁ

d) a, =

3n° 42
3
b) an:tg4_n;
3
n-arctg(n+5
@ = n4gil :
2
n“+4
b) an:( o );
d) a, = L :
" In(/3n+2n)’

n
b) a, :nS(%j ;

3
n+1

d) a, = 5 :
4n° + 2




2n+5

Variant 1. A = (3n _1)(n +1) '
2n° -1
Variant 2. an = o
Q= 1
Variant 3. " In(n+7)
_n3+4
Variant 4. an = (n +1)!'
1
: a, =
Variant 5. 3 n2 1n4+9
n?+3
Variant 6. an = g+l
a 1
Variant 7. n 2n+1)J/n+3
a - N +8
Variant 8. " @n-1r
a 1
Variant 9. n 7+4/72n+1+\/ﬁ'
_6n-1
Variant 10. n— n2 +3n+ 2'
3/n2
Variant 11. an:4+3n+n\/ﬁ'
2
Variant 12. a, = n"+3 ,
(2n+1)!

42



Variant 13.

Variant 14.

Variant 15.

Variant 16.

Variant 17.

Variant 18.

Variant 19.

Variant 20.

Variant 21.

Variant 22.

Variant 23.

Variant 24.

n
J2n3+3n2+1'

an

n°+5
5”-1 )

a, =

3n +1

a, = .
n%+3

1.1
a, = arctg —sin—.

n n
_2n+1
" Tn+3
1
a,=——.
nin(3n)
n*+5
a, = :
(n+2)!

1
a, = .
" 4Yn+1+2Un

Q1
" In(5+n)
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1

Variant 25. % = Son+i1-3
3n% +2
Variant 26. an = 15
B 1
Variant 27. % = n+3(7n+1)
~ n-6
Variant 28. n = (Bn+1)!
B 1
Variant 29. % = on+1+J/n+4
8n+1
Variant 30. an = N2_dn—2
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HABYAJIbHE BUOAHHA

BULLA MATEMATUKA

MeToau4uHi pekoMmeHpauii
A0 CaMOCTIMHOI poboTH
3a Ttemoro "Pagu"
Ana ctyaedTiB ranysi 12 "lHdopmaudinHi TexHonorir"

nepworo (6akanaBpCbKOro) piBHA
(aHrn. moBo1o)

CamocmiliHe efleKmMpPoOHHe meKcmose Mepexese 8UOaHHS

Yknapaui: Pnbanko AHToHiHa NaBniBHa
CtenaHoBa KatepnHa BagumisHa

BignosiganbHuin 3a BugaHHa J1. M. Manspeub
Pepaktop 3. B. 3o6osa

Kopektop 3. B. 30608a

BuknageHo HeobxigHMM TeopeTUYHUI MaTepian 3 HaByanbHOI AUCUMUNIIIHK Ta Ha-
BeJEeHO TUMOBI NPUKIaaun, siki CNpuaoTb HAaNBINbLL NMOBHOMY 3aCBOEHHIO MaTepiany 3 Temu
"Pagun" Ta 3acToCyBaHHKO OTpMMaHMX 3HaHb Ha npaktuui. HaBegeHo peTtanbHU onuvc
Ta MEeTOAWYHI pekomeHaauil 40 BUKOHaHHA 3aBAaHb AN CaMOCTIMHOT poboTn, nepenik ni-
TepaTypHUX DKepen, 3anuTaHHs Ta TecT AN cCaMOiarHOCTUKN 3 METOK BAOCKOHAIIEHHS
3HaHb CTYOEHTIB 3a OaHOK TeMow. Bu3HauyeHO NMpodecinHi KOMNETEHTHOCTI, AKX Haby-
BalOTb CTYAEHTU BHACIIQOK BUBYEHHSI TEOPETUYHOrO Matepiany h BUKOHAHHS NPaKTUYHUX
3aBAaHb 3a L€ TEMOLO.

PekomengoBaHo anga ctyaeHTiB ranysi 12 "IHdopmadinHi TexHonorii" nepworo (6a-
KanaBpCbKOro) piBHS.
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