
3ATBEPA}I(EHO
Ha 3aciAaHHi Ka$eApH
i nQoprraaui fi nrax cucreM.
flpororon Jllb I eil 22.08.2023 p.

fanyss 3HaHb

Cneqianruicrr
OcsirHifi pinenr
OcsirHs nporpaMa

Craryc AncqnnriHr,r
Mosa Br,rKJraAaHHfl, HaBqaHruI ta oqisroBaHHt

Pospo6Hurc:

K.T.H., C.H.C.

3ani4ynau raSe4pu
in$opnaaqi fi Hr,rx cr{creM

fapaHr nporpaMu

IOpifi TIAP@bOHOB

[uurpo EOHAAPEHKO

Oner OPOJIOB

.rHoi podoru

MAIIIKAJIO

o6ontsgKoBa
annniftcrrca

MIHICTEPCTBO OCBITI,I I HAYKII YKPAIHII
xApKrBcbKrrfr HArIroHAJrbHIrfr EKOHOMrrIHVrtrryHrBEpCrrrET

IMEHI CEMEHA KY3HEIIfl

OE' EKTHO.OPI€HTOBAHE IIPOIPAMTTBAHHfl

po6oua n porpaMa H aBqa.n ru oi Arrcqlr nJr iH n (P[IHA)

12 "InQoprvraqifi ni rexnororiitt
121 ttlHxeuepin nporpaMHoro ga6egneqeHHrt'

nepruu fi (6arca"uanpcsrcu fi)
ttlHxeuepin nporpaMHoro sa6egne.reHHrtt

ni4nucaHo KEII

I
//,r

//

rrr',/
/

1?
H

{#
;!ifi-\,

NI1AITtltI

Xaprcin 2024

MINISTRY OF EDUCATION AND SCIBNCE OF UKRAINE
SIMON KUZNETS KHARKIV NATIONAL UNIVERSITY OF ECONOMICS

APPROVED
at the meeting of the department
information systems.
Protocol J\b I of 22.08.2023

Field of knowledge
Specialty
Study cycle
Study program

Course status

Language:

Developer:
PhD (Information technology),
Senior Research Assistant

Head of Information systems
Department

Head of Study Programme

OBJEC T-ORIENTED PROGRAMMING
Program of the course

12 "Information technologies"
121 I'Software Engineering"
first (bachelor)
" Software Engineering "

mandatory
English

ethodical work

SHKALO

Yurii PARFONOV

Dmitro BONDARENKO

Oleg FROLOV

Kharkiv
2024

Ns0207121 1

N.{gA',-S

3

INTRODUCTION

Nowadays, the most common method of dealing with software complexity is an

object-oriented approach to its development. This requires the relevant specialists to

have a clear understanding of the concepts of object-oriented programming, which

makes it possible to use them in practice in the process of developing applications in any

programming language.

"Object-Oriented Programming" is a mandatory course that is studied in

accordance with the curriculum for the bachelor's degree in specialty 121 "Software

Engineering". A necessary element of successful mastering of the course's educational

material is the independent work of students with technical literature and modern

program development environments.

The aim of the course "Object-Oriented Programming" is to develop

competencies in using the basic elements of the object-oriented approach and modern

programming languages necessary to develop appropriate software applications.

The objectives of the course are the formation of object-oriented thinking;

mastering of the basic concepts of object-oriented design, analysis, and programming;

mastering of object-oriented programming languages; development of skills in the

development of object-oriented software systems; improvement of skills in using

programming environments.

The object of the course is the basic elements of the object-oriented approach to

software development.

The subject of the course is the principles of object-oriented programming and the

basics of object-oriented technology.

The learning outcomes and competencies formed by the course are defined in

Table 1.

Table 1

Learning outcomes and competencies formed by the course

Learning outcomes Competencies

LO7 SC10

LO8 SC1, SC10

LO 13 SC2, SC3, SC7

LO 15 SK10, SK11, SK13

LO 17 GC7

where, LO7. To know and apply in practice the fundamental concepts, paradigms, and basic principles

of functioning of language, technological and computing tools of software engineering.

LO8. Be able to develop a human-machine interface.

4

LO13. Know and apply methods of developing algorithms, designing software and data and

knowledge structures.

LO15. Motivated to choose programming languages and development technologies to solve the

problems of creating and maintaining software.

LO17. Be able to apply the methods of component-based software development.

SC1. Ability to identify, classify and formulate software requirements.

SC2. Ability to participate in the design of software, including modeling (formal description) of

its structure, behavior, and processes of functioning.

SC3. Ability to develop architectures, modules, and components of software systems.

SC7. Knowledge of data information models, ability to create software for data storage,

extraction, and processing.

SC10. Ability to accumulate, process and systematize professional knowledge of software

development and maintenance and recognize the importance of lifelong learning.

SC11. Ability to implement phases and iterations of the life cycle of software systems and

information technologies based on appropriate software development models and approaches.

SC13. Ability to reasonably choose and master tools for software development and

maintenance.

GC7. Ability to work in a team.

COURSE CONTENT

Content module 1: Fundamentals of the object-oriented paradigm

Topic 1: .NET and Java SE basics
1.1. Programming platforms .NET and Java SE: architecture, compilation, and

execution of programs, type system, standard class libraries, program development tools.

Topic 2. Fundamentals of an object-oriented programming language

2.1. General information about C# and Java languages: alphabet, data types,

operations, operators, program structure, basics of using standard libraries of .NET and

Java SE classes. Formatting strings.

2.2. One-dimensional and multidimensional arrays in C# and Java: creating,

initializing, processing, supporting arrays in standard .NET and Java SE libraries.

2.3. Methods in C# and Java: definitions, mechanisms for passing parameters,

using an array as a parameter, returning an array from a method, calling a method.

2.4. Overloading class methods. Principles of overloading operations.

Topic 3. Concepts of object-oriented analysis, design, and programming

3.1 Object-oriented decomposition. Principles of object-oriented approach:

abstraction, encapsulation, hierarchy, polymorphism.

3.2. The concept of an object. Characteristics of the object. The concept of class.

The relationship between a class and its object.

3.3 Object-oriented analysis and its purpose. The main types of requirements for a

software system. Object-oriented design. Object-oriented programming.

3.4. Software modeling. Basic concepts of visual modeling. Fundamentals of the

5

UML language. UML diagrams. UML class diagrams. Relationships in the class

diagram. CASE tools.

Content module 2: OOP technology

Topic 4. Data abstraction and encapsulation

4.1 Classes and structures. Elements of the class. Features of using static

elements. Access to class elements, access modifiers.

4.2. The concept of creating, initializing, and using objects. Reference this.

4.3. The life cycle of objects. The sequence of creating and initializing an object.

Constructors. The default constructor. Basic properties of constructors. Overloading of

constructors. Freeing up memory. The "garbage collection" system.

Topic 5. Reusing the code

5.1. The concept of association. Relationships of composition and aggregation

as types of association. Implementation of composition and aggregation in C# and Java.

5.2. The inheritance relationship. Implementation of the inheritance in C# and

Java. Initialization of the object of base class. Using constructors during inheritance.

Options for using inheritance. Overriding methods.

5.3. Early and late binding. Virtual methods. Implementation of the principle of

polymorphism in C# and Java. String representation of an object. Abstract classes and

methods. Implementation of polymorphic behavior based on an abstract class.

Interfaces. Implementation of polymorphic behavior based on an interface.

Topic 6: Basics of using Git version control system
6.1 Basic concepts of version control systems. Local, centralized, and distributed

version control systems. The basics of Git. Using local and remote repositories.

Topic 7. Principles of object-oriented design (SOLID)

7.1. Overview of SOLID. The single responsibility principle. The open-close

principle. The dependency inversion principle. Barbara Liskov's principle of

substitution. The interface isolation principle.

Topic 8: Introduction to design patterns

8.1. General information about design patterns. Advantages and disadvantages of

using design patterns. Elements of a design patterns.

8.2. Classification of GoF design patterns. Application of the main GoF design

patterns.

8.3. Overview of the GRASP patterns.

Topic 9: Class libraries

9.1. Libraries and their use. Static and dynamic libraries.

9.2. Developing libraries on the Java SE platform. DLL-libraries. Development of

DLL-libraries on the .NET platform.

6

Content module 3: Exception handling and Class libraries

Topic 10. Handling exceptional situations

10.1. Types of errors in programs. Problems of the traditional approach to error

handling.

10.2. Mechanism for handling exceptions. Exception classes of standard

libraries .NET and Java SE. Syntax of exception handling.

Topic 11. Standard class libraries

11.1. General information about collections. The basic data structures of the

standard collection libraries of .NET and Java SE. Typed collections.

11.2. Using lambda expressions

11.3. Using LINQ and Stream API

11.4. Features of the implementation of the string data type on the .NET and Java

SE platforms. Classes of standard .NET and Java SE libraries for representing strings

and features of their use.

11.5. Purpose and use of regular expressions. Support for regular expressions on

the .NET and Java SE platforms. Special characters used in regular expressions.

11.6. Sources and consumers of data. General information about data input and

output streams. Algorithms of data input and output. The main classes of standard .NET

and Java SE libraries to support data input and output.

11.7. Saving and restoring the state of objects on the .NET and Java SE platforms.

Serialization and deserialization. "Graph" of objects during serialization. Creating

classes whose objects can be serialized. Serialization and deserialization processes.

Serialization formats.

11.8. General information about object-relational data mapping. The concept of

ORM frameworks for .NET and Java SE platforms. Introduction to models. The class of

the model. Setting up models. Database migrations.

11.9. Distributed software systems. Software clients and servers. General

information about TCP sockets. Basics of using TCP sockets on .NET and Java SE

platforms.

The list of laboratory studies in the course is given in Table 2.

Table 2

The list of laboratory studies
Name of the topic Content

Topic 2. Laboratory session 1 Basics of using C# and Java programming languages

Topic 3. Laboratory session 2 Designing classes using the UML language

Topic 4. Laboratory session 3 Developing applications using basic elements of OOP

Topic 5. Laboratory session 4 Application of inheritance and polymorphism

7

Topic 6. Laboratory session 5 Using Git version control system

Topic 8: Laboratory session 6 Using design patterns

Topic 11. Laboratory session 7 Using collections

Topic 11. Laboratory session 8 Using lambda expressions, LINQ and Stream API

Topic 11. Laboratory session 9 Using regular expressions

Topic 11. Laboratory session 10 Using data input and output

Topic 11. Laboratory session 11 Using object-relational data mapping

Topic 11. Laboratory session 12 Using TCP sockets

The list of self-studies in the course is given in Table 3.

Table 3

List of self-studies
Name of the topic Content

Topics 1 - 11 Study of lecture material

Topics 1 - 11 Preparing for laboratory classes

Topics 1 - 11 Preparing for the final exam

The number of hours of lectures, laboratory studies and hours of self-study is

given in the technological card of the course.

TEACHING METHODS

In the process of teaching the course, to acquire certain learning outcomes, and

activate the educational process, it is envisaged to use such teaching methods as:

Verbal (lecture (Topics 2, 4, 5, 6, 8 - 11), problem-based lectures (Topics 1, 3, 7)).

Visual (demonstration (Topics 1-11)).

Practical (laboratory studies, interactive distance learning, coaching, presentation,

role-playing games (Topics 1-11); case studies (Topics 6, 11)).

FORMS AND METHODS OF ASSESSMENT

The University uses a 100-point cumulative system for assessing the learning

outcomes of students.

Current control is carried out during lectures and laboratory classes and aims to

check the level of readiness of the student to perform a specific job and is evaluated by

the amount of points scored:

- for courses with a form of semester control as grading: maximum amount is 100

points; minimum amount required is 60 points.

- for courses with a form of semester control as an exam: maximum amount is 60

8

points; the minimum required is 35 points.

The final control includes current control, assessment of the student and exam.

Semester control is carried out in the form of grading and a semester exam.

The final grade in the course is determined:

− for disciplines with a form of grading, the final grade is

the amount of all points received during the current control.

− for disciplines with a form of exam, the final grade is

the amount of all points received during the current control

and the exam grade.
During the teaching of the discipline, the following control measures are used:

1 semester

Current control: defense of laboratory work (83 points), final control work (17

points).

Semester control: Grading

2nd semester

Current control: defense of laboratory work (50 points), control work (10 points).

Semester control: Grading including Exam (40 points).

More detailed information on the assessment system is provided in technological

card of the course.

An example of an exam card and assessment criteria.

Example of an exam card

Task 1.

Develop a Point3D class (a point in three-dimensional space) with fields X, Y, Z, which are the

coordinates of the point in the Cartesian system. This class should also have a method for calculating

the distance from the origin to the point using the formula (X
2
 + Y

2
 + Z)

21/2
 , and set and get

properties for setting the point coordinates and getting their current values, respectively.

Develop another class that contains the Main() method in which it is executed:

1. Entering the coordinates of a single point from the console, creating the corresponding

object of the Point3D class and initializing it using the set properties.

2. Display on the console the coordinates of this point and the distance from it to the origin

using the created object of the Point3D class and the get property.

Task 2.

Create three classes: Group, Student, MainClass (contains the main method of the program).

The Group and Student classes must be linked by an aggregation relationship, in which a group

consists of three students.

The Student class at least has the LastName field - the student's last name. The Group class

must at least contain the AddStudent method with parameters, designed to add a student to the group,

and the PrintList method for displaying the names of the group's students on the console.

9

The main method of the program must at least execute:

1. Creating a single object of the Group class.

2. Entering initial data about students from the console and calling the AddStudent method.

3. Calling the PrintList method.

Assessment criteria

The exam card consists of two heuristic tasks. Each task is rated from 0 to 6

conditional points according to the following scale:

6 points The task has been completed in full. The program works correctly. The interface and

source code of the program meet the requirements specified in the assignment.

5 points The task is completed. The program works correctly, but one of its features is

implemented in violation of the requirements specified in the assignment.

4 points The task is mostly completed. The program works, but two of its features are

implemented in violation of the requirements specified in the assignment.

3 points The task is completed, but not in full. The program works, but one of the functional

requirements specified in the assignment is not implemented, or three of the program's

features are implemented in violation of the requirements specified in the assignment.

2 points The task is not completed. The program runs, but two of the functional requirements

specified in the task are not implemented, or four of the program's features are

implemented in violation of the requirements specified in the task.

1 point The program is launched and partially meets the task formulation, but more than two of

the functional requirements specified in the task are not implemented, or more than

four of the program's features are implemented in violation of the requirements

specified in the task.

The program does not start or crashes, but there is a program code developed by the

student that meets the task formulation.

0 points There is no program.

The program does not contain program code developed by the student.

The program does not meet the task formulation.

The program has obvious technical signs of not being developed independently.

Failure to comply with or significant violation any of the general requirements for the program

reduces the number of conditional points for the task by one point.

General requirements for programs

1. The user interface of the console program developed in accordance with the task formulation

must consist of text messages in English related to the input and output of basic and auxiliary

data. The use of transliteration is prohibited.

2. Adherence to the principle of encapsulation regarding access levels to fields, properties, and

methods of classes.

3. The source code of each program class should be in a separate file.

The final grade for the exam is determined by the sum of the conditional points

gained for the two tasks:

10

The amount of conditional points

gained

Final grade for the exam on a 40-point scale

12 40

11 38 - 39

10 36 - 37

9 34 - 35

8 32 - 33

7 30 - 31

6 28 - 29

5 26 - 27

4 24 - 25

3 16 - 23

2 8 - 15

1 1 - 7

0 0

RECOMMENDED LITERATURE

Main

1. Booch G. Object-Oriented Analysis and Design with Applications / G.Booch,

R.A.Maksimchuk et. al: Addison-Wesley, 2019. - 717 p.

2. Troelsen A.Pro C# 9 with .NET 5 : Foundational Principles and Practices in

Programming / A. Troelsen, P. Japikse - Berkly: Apress, 2021. - 1353 p.

Additional

3. Lewis J. Java Foundations. Introduction to Program Design and Data

Structures / J. Lewis, P. DePasquale, J. Chase - Lancing: Pearson, 2020. - 1104 p.

Information resources

4. What are UML diagrams, and how can you use them. [Electronic resource]:

https://miro.com/blog/uml-diagram/.

5. C# documentation [Electronic resource]: https://docs.microsoft.com/en-

us/dotnet/csharp/.

6. C# Tutorial [Electronic resource]:

https://www.tutorialspoint.com/csharp/index.htm.

7. Java Tutorial [Electronic resource]. - Access mode:

https://www.w3schools.com/java/default.asp.

8. JDK 20 Documentation [Electronic resource]:

https://docs.oracle.com/en/java/javase/20/.

11

9. Щербаков, О. В. Основи об'єктно-орієнтованого програмування : навч.

посіб. / О. В. Щербаков, Ю. Е. Парфьонов, В. М. Федорченко - Харків : ХНЕУ ім.

С. Кузнеця, 2019. - 236 с. [Електронний ресурс]. - Режим доступу:

http://repository.hneu.edu.ua/handle/123456789/23847

10. Personal learning system "Object-oriented programming (121, Fall semester)"

[Electronic resource]. - Access mode: https://pns.hneu.edu.ua/course/view.php?id=9125.

11. Personal learning system "Object-oriented programming (121, Spring

semester)" [Electronic resource]. - Access mode:

https://pns.hneu.edu.ua/course/view.php?id=7819.

