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CORPORATE DECISION-MAKING MULTIAGENT MODELS

A. Milov
S. Milevskiy

Any goal-oriented activity is related to decision-making, that is why intuitive understanding of the content and
structure of decision-making problems is fairly obvious. Nevertheless, until now, there has not been developed a sufficiently
general theory of decision-making. This is primarily caused by the diversity of the tasks of decision-making without
explicit intersections in their formal structure and substantive content. Therefore, this research is limited to the class of
problems where decisions are made by a variety of decision-makers between whom the information necessary for
decision-making is distributed, and who operate in parallel interacting with each other in the decision-making process.

Designing a structure of a decision-maker group interaction, and interactions between them for real time effective
management of a complex, large-scale system has been discussed. The authors have attempted to combine, on the
methodological level, the classic concept of decision-making, approaches to economic system distributed management
and multiagent modelling.

Thus, designing a structure in which problems of distributed control can be successfully presented has been
described.

The proposed approach is based on the assumption that none of the decision-makers have a complete and
accessible to them system model. The proposed structure can be used for a corporate organization design in which
a person is one of the resources for decision-making.

Keywords: multiagent modelling, Markov decision model, system structure, organizational design, interaction of agents.

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

MYJNIbTUATEHTHI MOLENI NPUAHATTA KOPMOPATUBHUX PILLEHDb

Minoe O. B.
Mineecbkutli C. B.

bydb-sika uineopieHmoesaHa OisinbHiCMb noe'd3aHa i3 NPUUHAMMSAM pilueHb, MOMY IHMYimueHi ysi8rneHHs rpo
3amicm | cmpykmypy npobnemu npulHamms piweHb documb o4esudHi. [lpome 0o cbo200Hi He icHye desikoi documb
3aearnbHOi meopii npuliHAMMSs piweHb. [NpuyuHU Ubo2o crid wykamu, nepw 3a ece, y pisHOMaHimHocmi 3agdaHb
npulHAMMS pileHb, SKi He Marmb S8HUX rnepemuHie y IXHil ¢ghopmarnbHil cmpykmypi ma 3MiCImo8HOMY HarlO8HEHHI.
Tomy cripaexHio pobomy 0bMexeHO KriacoM mux 3aedaHb, y SIKUX PileHHs npulimae 6e3sniy ocib, MK SKUMU pOo3ro-
OineHo HeobxiOHy 0nsi NpUUHAMMS pileHHs IHgbopmauito, i SKi hyHKUIOHYIOMb napanesibHo, 83aemMo0ilomb M cobor
y Apoueci NpulHAMMS PilUEeHHS.

Po3sanssHymo npobriemy npoekmysaHHs cmpykmypu 83aemodii epynu ocib, siki npuliMarome pilueHHs, i 83aemModill
MK HUMU Onsi eQheKmueHO20 yrpaseiiHHA CKIaOHOM, eeslukoMacwmabHO CUCMEMOI0 8 pEeXuMi peasibHO20 4Yacy.
Asmopamu 3pobrneHo cripoby Ha MmemoQonoegidyHOMYy pieHi 06'eOHamu Kracuy4Hi KOHUenyii nputiHamMms pileHs i nioxodu
00 po3rodineHoeo yrpassniHHA eKOHOMIYHUMU cucmeMamu ma Myrbmua2eHmHe MOOento8aHHs.

© A. Milov, S. Milevskiy, "EkoHomika po3suTky" (Economics of Development), Ne 3 (79), 2016
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Takum 4uHoM, y pobomi 8i00bpaKeHO rpPouec MPOEKmMye8aHHsI CmpyKmypu, y Mexax sikoi Moxe 6ymu ycriuHoO
rnodaHo npobremu po3rnodineHo20 yrpassiiHHS.

BanpornoHosaHull nioxi0 3acHO8aHO Ha MNPUMyWeHHI Npo me, wo xo0Ha 3 0cib, sKi NpuliMaromb PilUEHHS, HE Mae
rnosHoi U docmynHoi iti moderni cucmemu. 3anpornoHogaHy cmpykmypy mMoxe 6ymu sukopucmaHo Orisi POeKMyeaHHs
opezaHizauii, y kit moduHa ik 0OUH i3 pecypcie NPUlHAMMS PilueHHS.

Knrouoei cnoea: mynbmuazeHmHe MOOEN08aHHs, MapKieCbka MoOesb NpuliHAMMSs PilueHHs, cmpykmypa cuc-
memu, opaaHizauiliHe npoekmyeaHHs, 83aemMo0isi azeHmis.
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MYJINbTUArEHTHbIE MOAENN
NMPUHATUA KOPMOPATUBHbIX PELLEHUNA

Munos A. B.
Muneeckuti C. B.

Jliobas yeneopueHmupogaHHass OesimesibHOCMb C8si3aHa C MPUHAMUEM peuweHul, [No3moMy UHMYyUmueHble
npedcmasnieHuUsi 0 cooepxaHuu u cmpykmype npobreMb! NPUHAMUS peweHuli 0o0cmamoYHO 04e8UOHbI. TeM He MeHee,
0o Hacmosiwezo 8peMeHU He cyuecmsyem Hekomopol docmamoYyHo obuwieli meopuu npuHAmMuUs peweHud. MpuduHbl
amoezo credyem uckamb, npexoe ecez2o, 8 pa3Hoobpasuu 3adady MpUHAMUS peweHul, He UMEeKUWUX SI8HbIX nepe-
ceyveHull 8 ux ¢hopmarnbHoOU cmpykmype u 8 codepxxamesibHOM HarnonHeHuu. [Toamomy Hacmosiwas paboma ospaHu-
yueaemcsi K/1laccoM mex 3aday, 8 KOMOPbIX PEWEHUS NMPUHUMAOMCS MHOXECMEOM 3KOHOMUYECKUX a2eHmos, Mexoy
KomopbIMu pacripedenieHa Heobxodumas 0715l IPUHAMUS peweHusi UHGhopMayus, U Komopblie yHKUUOHUPYrOmM napari-
nenibHo, 83aumodelticmeaysi mexdy cobol 8 Mpoyecce NPUHSAMUS PeUeHUs.

PaccmompeHa npobriema npoekmuposaHusi cmpykmypbl e3aumodelcmausi 2pynrbl a2zeHmos, MPUHUMarUUX
peweHus, u e3aumodelicmeuli Mex0y Humu Orisi 3¢chgheKmuUBHO20 yrpaerieHusi CHOXHOU, KpyrnHomacwmabHol cuc-
memoli 8 pexume peasibHo20 8peMeHU. Aemopamu rpedrnpuHsma rornbimKka Ha MemoOosI02au4eckoM yposHe 00b-
e0uUHUMb Kraccu4yeckue KOHUenuyuu rnpuHamusi peweHul, nodxodb! K pacrpedesieHHOMY yrpasieHUur 3KOHOMUYECKUMU

cucmemamu u myrnbmuaceHmHyoe MOOG!'IU,DOGaHUG.

Takum obpasom, 8 pabome ompaxxeH MPOoYECC MPOEKMUPO8aHUsi CMPYKMypbl, 8 paMkax Komopoul mo2ym 6bimb
ycrewHo npedcmaessneHbl npobriembl pacrnpedesieHHO20 yrpasieHUsl.

lpednazaemsbili 10dxod ocHo8aH Ha MPeOdrnooXeHUU O MOM, YMO HUKaKoU U3 azeHmos, MPUHUMAaKWux pewe-
Hue, He umeem ronHoU u docmynHou eMy modesnu cucmembl. [lpednazaemas cmpyKmypa MoXxem UcCrofb308ambCs
0719 NPOEKMUpPOBaHUS Op2aHU3ayUOHHOU cmpyKmypbl KOpriopayuu, 8 KOmopol 4Yerosek ebicmynaem 8 kadecmae 00-

HO20 U3 pecypcoes rNpuHAMmMuUA peweHus.

Knroyeenie crnoea: MyJibmuacgeHmHoe ModenupoeaHue, MapKoecKas mooersb npuHamMuUA peweHuUd, cmpykmypa
cucmemsbl, opeaHu3alyuoHHOe rnpoeKkmupoeaHue, 83aumodelicmaue a2eHmos.
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Management decision-making in corporate structures
can be considered as decentralized management carried out
by a group of economic agents having a common global goal.
Such a situation is characterized by the fact that no agent
during their work has the possibility of monitoring the proces-
ses and the state of the whole system. The behavior of each
of the agents can be characterized by independent observa-
tions and local target functions. Such a decision-making system
can be described quite well by the models of Markov decision
processes (MDPs).

Recently, the indicated models have been adequately
studied as a mathematical framework for consistent decision-
making in stochastic domains. In particular, the decision search
planning problem for an individual agent in stochastic domains
was modelled as partially observable Markov decision pro-
cesses (POMDPs) or fully observed MDPs [1 — 3]. For the
considered planning problems the optimal scheduling plans
can be found using the methods of operations research in
relation to the corresponding Markov decision processes.
Significant results in the decisions of individual MDPs were
obtained using a domain structure [4; 5]. In [6] an approximation

of MDPs is described, which suggests that the compensation
function can be decomposed into local compensation functions,
each of which is dependent on a small number of variables.

Furthermore the authors are interested in a separate
Markov decision process, which is jointly run by a set of
decision-making agents. They cooperate in the sense that
they only seek to maximize a global goal (or to minimize the
cost of achieving it). However, each of the agents has no
opportunity to monitor the entire system as a whole in the
decision-making process. Similar processes are characteristic
of many application areas, from individual production (enterprises)
to multinational corporations.

These processes are examples of decentralized partially
observable Markov decision processes (DEC-POMDPS) or de-
centralized Markov decision processes (DEC-MDPs). Com-
plexity of decision search for these processes has been
investigated in [7; 8]. In [9] an algorithm of a joint research
strategy (JESP) is presented, which finds an optimal joint
decision. In [10] the researchers made an attempt to explore
the method of decentralized decisions based on the gradient
descent approach for network learning when the system
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model is unknown to the agents. The author of [11] suggests
that every decision-making agent has an appointed task of
local optimization. The following analysis shows how to create
a global objective function for optimization of a problem when
agents are free to exchange information about the values of
their local extremes.

A common feature of these papers is a rejection of the
assumption that each agent has their known local compen-
sation function. Questions that they are trying to answer are
how to configure or manage the local functions of remune-
ration to approximate the actual remuneration function of the
entire system.

The algorithm for finding an optimal decision in a de-
centralized corporate management structure is presented in [12].
The presented algorithm is implemented on the assumption of
a certain remuneration function structure. The generalization
of dynamic programming methods to find optimal structures of
decentralized management decisions is described in [13].
Special class models DEC-POMDPs were reviewed and pre-
sented in [14]. In [15] a method of searching effective deci-
sions for this class of models was proposed. It is interesting to
study the case of decentralized management, in which the
agents share information about each other's actions during
the off-line planning stage. A decision including a joint strategy
of an only one possible action for each agent is presented in [16].
It makes sense to compare the obtained decisions with the
decisions found for centralized multiagent systems, modelled
as MDPs structures [17], where the planning stage (off-line),
and the control stage (on-line) are carried out in a centralized
system, where full observability is realized for all agents.

Any goal-oriented activity is related to decision-making,
so intuitive understanding of the content and structure of
decision-making problems is fairly obvious. Nevertheless, until
the present time, no sufficiently general theory of decision-
making has been developed. The roots of this should be
primarily linked to the diversity of the decision-making tasks
that have no explicit intersections in their formal structure and
substantive content. A fairly complete review of these problems
is contained, for example, in [18; 19]. It seems clear that it is
hardly possible to build a universal theory, applicable to any
problem of decision-making [20 — 22].

Therefore the authors have restricted themselves to
the class of problems in which decisions are taken by eco-
nomic agents, among whom the information necessary to
make decisions is distributed, and who operate in parallel,
interacting with each other in the decision-making process.

The research deals with the problem of the interaction
framework design for decision agents and interactions bet-
ween them to effectively manage a complex corporate system
in real time. An attempt has been made to combine the
classic concept of decision-making approaches in the field of
distributed control in economic systems and multiagent simu-
lation on the methodological level.

The proposed approach is characterized by the fol-
lowing features:

1) multidisciplinarity and conceptuality of the approach;

2) the level of detailing that determines the applicability
to solving any practical problem;

3) transparency, which means that the proposed ap-
proach is one of many approaches that could be used to man-
age this problem.

Thus, the structure design process has been de-
scribed, in which the processes of distributed control can be
successfully implemented for a group of economic agents.

The proposed approach is based on the assumption
that none of the agents who make decisions, have an adequate
model of the entire managed system. More specifically, each
agent knows about the actions of only a single subsystem, for
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which he is an "expert", and meanwhile he does not know
anything about the structure of the system beyond his domain.
Assessing the impact of his decisions on the rest of the system
and the influence of external to him decisions on the managed
subsystem can only be obtained in the process of interaction
with other agents like him. Thus, the process of management
decision-making is distributed among the agents, and the
coordination of planned activities to a large extent depends on
the available resources of interaction. The proposed structure
can be used for the design of an organization in which an
economic agent acts as a resource for decision-making.

Further consideration of multiagent modelling of pro-
cesses of management decision-making in corporate structures
will be based on the combined use of four main concepts [23 — 25]:

1) the Markov concept of a condition;

2) the law of Bayes in the probability theory;

3) the use of a global performance scalar index;

4) dynamic programming.

When these concepts are used for systems containing
multiple decision agents, the following problems arise.

Each agent can assess the conditional probability of
the state of its own process, but dynamic programming requires
the knowledge of conditional probabilities of the process state
effects of other agents, coming in the form of input signals
from other agents. That, in its turn, leads to a necessity for
any agent to obtain models of other agents (which have
a memory, at least in the form of conditional probability, and
hence the state space), and for those and other agents to
have knowledge about the models of the first agent (and models
of their patterns), etc. With this approach, the problem of the
optimal strategy formation for multiagent decentralized mana-
gement usually becomes difficult in this structure.

One of the ways to overcome these limitations is to
provide each model agent with only a part of the state space
and the related dynamics. In this case models used by all the
agents should represent the system as a whole, and each
agent should know that all other parts of the system do exist
and provide influence on the relevant part of the system. This
logic of reasoning leads to the following formulation of the
principle of corporate level management decision-making multi-
agent modelling: every decision-making agent has a limited
model of the controlled system.

Next, let us consider two agents interacting with each
other so that the action of one agent ("A") directly affects the
dynamics of the other one ("B"). There is a need for com-
munication between them. Agent "B" must notify agent "A" of
the action taken by him, so that it could be possible to explain
the actions arising from these consequences. Agent "A" must
inform "B" about his goals, so that agent "B" could plan his
own actions that could help agent "A" to achieve the goal set
by him. Thus it is necessary to prevent strategies, where the
channel with endless bandwidth is used for transmitting all
messages to a single node that implements centralized con-
ventional strategy. Therefore, there must be formulated some
limitations for relations of a particular type.

If two agents have models that are almost opposite in
their variables, the set of attributes, which they could
exchange, of course, is limited. A common feature of the two
agents, "A" and "B", is the set of interaction variables, pro-
duced by the agent, which affects the other. It is only common
context that they have as a basis for communication. This
reasoning leads to the formulation of the second principle of
multiagent decision-making system modelling: "communi-
cation between agents is realized only with the use of vari-
ables directly related to the main interaction variables".

The traditional approach to the distribution of the
computing load between decision-making agents is to use
iterative exchanges between them. This approach, while often
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effective, generally requires a significant bandwidth of the
feedback means, since in each step several iterations must
be performed to determine the current set of control inputs.
For this reason, developed coordination and decision-making
strategies of management decisions must take into account
the following principle: "iterative methods, which suggest a
connection between the agents at each step, must be avoided".

Finally, the definition of the modelled structure itself
ensures that the decision-making agents will be often missing
information on many processes that can influence them. Thus
a decision must be taken under conditions of uncertainty.

The traditional approach in the case of decision-making
under uncertainty is the assumption of the worst case (and the
relevant criteria). It gives an attractive advantage to provide
the autonomy to local decision-making agents: communication
serves as a means for reaching agreements between two
agents, limiting the actions of each of them. Each agent can
be free to choose one of several alternatives within the agreed
limits, knowing that another agent would consider his choice
as a possible worst case for himself. Thus, the latter formulated
principle is as follows: "uncertainty about the future actions of a de-
cision-making agent can be removed or by either messaging
or a worst-case assumption".

A distributed multiagent decision-making economic
system can be defined as a tuple

MAS = <A, E, R, ORG, ACT, COM, EV >,

according to which it is understood as a set of agents
A, which can operate in some environments E, which are in
certain relations R and interacting with each other, forming
a certain organization ORG, having a set of individual and joint
actions ACT (strategies of behavior and actions), including
possible communication actions COM, and characterized (as,
indeed, individual agents) by capabilities for evolution EV.

The decision-making system topology can be expres-
sed in graph G, which consists of a finite set of N-nodes and
a set of L-arcs

G=(N,L). )

For convenience, we assume that the nodes are
numbered 1, 2, ..., | N | = N in some unique way. Arcs connect
one node with another in one direction

L &N xN, 2)
where (i, j) <L indicates the bond connecting node i to node j.
G will reflect the basic dynamic effect of the i-agent
subsystem on the j-agent subsystem. (Note that the agent i
always affects the agent j, which is implicitly the owner of its
own i-model).

Each arc will represent not only a dynamic interaction,
but also an appropriate interface in the decision-making
structure. Since the graph is not necessarily bidirectional, no
assumption about the symmetry of G is needed.

The arcs represent relationships of subsystems to each
other, modelled in each node, but we also need to consider
their relation to the inputs, outputs and goals of the system.

Inputs: each entry must be defined by one and only
one agent (the one that models its direct impact).

Outputs: each system output can similarly be only
associated with a single agent, which models the formation of
this output, based on the variables in the model of this agent.

Goals: some agents bind specific goals with their own
models. Other agents may have no individual goals — their

function is to organize (coordinate) operations of other agents
so that their goals could be achieved.

This preserves a distinction between the decision
agent in the node i, A;, and the submodel which he has M.
The model can include formal representation on how to interact
with other agents, the strategy of behavior and actions of the
agent as well as the possibility of the agent evolution. We
introduce the concept of an agency decision-making system
module DM; as a combination of the decision-making agent
and the model of the subsystem he represents

DM; = (M;, A). (3)

This refers to an agent that makes decisions indepen-
dently of other agents, and which has a model of some sub-
system in which he is an "expert", and which has to commu-
nicate with other agents in order to achieve a desired level of
the whole system functioning quality.

Now we can say that the problem of distributed de-
cision-making is presented in the form of a multiagent module
structure if the local models M; and interaction relationships G
are identified. Thus, the modular multiagent model is an ex-
tension of the classical model concept for the explicit forming
of a distributed multiagent structure.

Each local model M; is complete in the sense that it
has the Markov properties: there is a set of states X;, but the
local condition change function depends on the interaction
variables that reflect the impact of parts of the system whose
models are presented in other modules. Interaction variables
are selected from the sets Zij, which reflect the impact of the
subsystem, modelled in DM;, on the subsystem modelled in
DM;. They are defined as the interaction function values on
a set of states DM as follows

gij: Xi = Zj;. (4)

The values that reflect the interaction z;; for each state
Xi, @i functions are generally irreversible, i.e. there will be

some pair Xil and Xiz, such as
1 2
gij (Xil) =0j (Xiz) for Xi # X (5)

for any i and j. In other words, it may be an expression in which
it is impossible to uniquely reconstruct the condition.

The management and monitoring spaces are defined
as follows:

U is the set of controls, from which one can select the
module DM;

Y; is the set of measurements that can be obtained by
the module DM,;.

Now the model Mi, which is owned by the DM; mo-
dule can be determined. Here is the tuple consisting of the fol-
lowing eight components:

X; is a set of the local states;
{Z;} is the sets of an aggregated states;
U, is the set of inputs;
Y; is the set of outputs; (6)
f; is the function for definition of the next state;
h; is the function for definition of the next output;
{g;} is aggregation functions;
C; is the local cost function,
where
fi: XiXZ]_iX---ZNiXUi %X“ (7)
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i Xi = Zij; ®)
hi: XixZyix..xZyi = Yi; 9)
Ci: XiXXinliX...XzNiXtJi —-R. (20)

Equation (7) expresses the constraint that reflects the
fact that the transitions depend only on the local state and
direct interaction with neighboring agents, as well as control
variables; equation (9) does the same for the outputs. Equa-

tion (10) defines a local agent target function: ¢i(X;, X", Zyi, Zy;,
...y Zyiy U;) is the cost of transition from the state x; at the time t
to the state xi+ at the time t+1, where interaction variables
Zii, Zoi, ..., Zyj are present, and U; applies. (To simplify the
notation, the vector Z; = (2, Zy; .-, Z5j) can be entered as a com-

plete set of interaction variables, affecting the subsystem DM;).

An important feature of the introduced formulation is
that the concept of a centralized state was replaced by the
notion of a set of local states. To determine the future local
response A; to the local inputs it is not enough to know only
the local state X;; the knowledge of the other agents' future
interactions is also necessary. Optimal strategies for decision
search usually require a maximum possible amount of knowledge
about the results of the possible decisions, it should be
expected that the adoption of local decision will be based on
the collected maximum of available information on the local
state and future interactions.

For further consideration, to simplify the process, we
assume that the functions of surveillance h; implement the
relationship "one to one": each agent at any time t knows the
state and interaction variables with full certainty. This helps
avoid complications introduced by the problem of evaluation,
and allows focusing on the coordination problem. Let us make
no assumptions about the relation of local goals and objectives
of the organization as a whole, because it involves the con-
sideration of a broad class of organizational structures. The
only important structure to be considered is a corporation,
where all economic agents, decision-makers seek to minimize
the sum of the local decision-making function values.

It is necessary to mention two properties of the pre-
viously made statement. It is obvious, that the distributed model
is a dynamic equivalent for a centralized model. However, the
usual way to transfer deterministic approaches to the modelling
of stochastic processes, which is based on the distribution of
(conditional) probabilities as the realization of states and transi-
tions from state to state, has a serious limitation in the pre-
sented context.

Building a centralized model, which is equivalent to a
modular multiagent system is traditional, the original
formulation is correct for the modelling and there is no
fundamental incompatibility of these two types of models.
However, in general, for a distributed multiagent model
powers of various sets are much higher than the powers of
the sets, used to determine the local models. The equivalent
centralized model has sets of states, controls and outputs,
which are the Cartesian product of the sets representing the
individual states, controls and outputs. The function of state
transitions in the centralized model is the direct product of
local functions f; and gj; aggregation functions. Thus,

X(t) = (% (£), X5 (1), Xy (1)

=(f0qt -1, 2t -Dut-1)); - fy (xy (t-1),Zy (t - ),up (t-1)))
=(R0(-1,0500(t-D)s g Oy E=Dut=D)s 59y
iy O (0 =2), 958 (Gt 1))+ gun (X (E-D) Uy (E-1)))

= F (=) Xy (=D, uy (t =1, uy (E-1)
=f(x(t-1),u(t-1),

where X and U are state and control of a centralized model.
Similarly,
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12)

y(© = a0, yn () =
= (04 (), 22(0) - by (x1 (©), Zy (1)) = h(z(1))
for each Zij(t):gij(xi(t)).

It can be proved that there is a corresponding centralized
model with identical behavior, given by (11) and (12) for each
modular multiagent model.

It would be highly desirable to include in the modular
multiagent models probabilistic effects, reflecting the stochastic
processes. Many stochastic control problems can be reduced
to a deterministic equivalents by selecting the appropriate
state spaces (such as a probability functions lying in the state-
space base). This statement is limited to the case of certain
information about the states (and interactions), and stochastic
processes can be reflected only in the functions of the state
transition, but not in the measurements. Stochastic matrices
(graphs) of state transition replace the expression:

x() = f; (5 (t -1,z (t-1,u;(t -1) (13)
by the conditional probability densities:
pi (% (1) | x; (t=1), Z; (t =1),u; (t -1))- 14)

This, in particular, allows presenting a forecast of future
interactions in the following form

Pz (t+1) =2 p(xi (t+1) [ 0,7 (1).0; (1) - PO (1), (15)

where the summation is performed over all x;(t + 1), so that

Zij(t+1) = g; (z; (t +1)). (16)

Thus, any unit of the multiagent model, given by its
input interactions, and the state at the time t, can calculate the
probability distribution of its output states and interactions at
the moment of time t + 1, using (14) and (15). In this case it
would be desirable to repeat this process: considering a pro-
bability distribution of input interactions at the time t + 1,
computed by other agents, the module can determine the output
interactions in a next time t + 2, etc.

The model presented above may be defined as a de-
terministic multiagent system with a variety of local states
P(Xi), a variety of control U; and the set of interactions P(Z;).
In this case, on the given p(xi(0)), u(z) and p(z;i(z)) for all
jyi =1, .., Nand 0 < z<titis impossible to determine
unequivocally p(xi(t)) and p(z;(t)).

The difficulty arises from the fact that the interactions
determined by the value of p(z;i(7)), after some time, are cor-
related, which is ensured by the dynamics of DM;.

In the construction of stochastic modular coordination
algorithms the result is important, that DM; requires interaction

™ . . t .
sequences probability (i.e., density on Zji), instead of the pro-

posed sequence of interaction probabilities (i.e., the density of
t on Z;), to predict the probability of a transition to local
conditions and, therefore, the behavior of the entire multi-
agent system. Besides that, stochastic modules are equally
suitable for the models as deterministic ones.

The following conclusions can be drawn from the research.

The key concept of the proposed approach is an indi-
vidual system component, a module, whose agent is an expert
in the unique subsystem with respect to which he and only he
has the most comprehensive knowledge, and for which he is
responsible.
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For modular multiagent systems some methods that
support decision-making can be developed. A common approach
to developing mechanisms for coordination is to select a se-
quence of interactions between the subsystems first, and then
to solve local, relatively independent optimization problems.

References: 1. Planning under time constraints in stochastic domains
/ T. Dean, L. P. Kaelbling, J. Kirman et al. // Artificial Intelligence. —
1995. — No. 76. — P. 35-74. 2. Kaelbling L. P. Planning and acting
in partially observable stochastic domains / L. P. Kaelbling, M. L. Lit-
tman, A. R. Cassandra // Artificial Intelligence. — 1998. — Vol. 101,
issue 1-2, May. — P. 99-134. 3. Boutilier C. Exploiting structure in
policy construction / C. Boutilier, R. Dearden, M. Goldszmidt // Pro-
ceedings of the Fourteenth International Joint Conference on Arti-
ficial Intelligence, Montreal, Canada, 1995. — P. 1104-1111. 4. Bouti-
lier C. Sequential optimality and coordination in multiagent systems
/ C. Boutilier // Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, Stockholm, Sweden, 1999. —
P. 478-485. 5. Feng Z. Symbolic heuristic search for factored
Markov decision processes / Z. Feng, E. A. Hansen // Proceedings
of the Eighteenth National Conference on Artificial Intelligence,
Edmonton, Alberta, Canada, 2002. — P. 455-460. 6. Efficient
solution algorithms for factored MDPs / C. Guestrin, D. Koller,
R. Parr et al. // Journal of Artificial Intelligence Research. — 2003. —
No. 19. — P. 399-468. 7. The complexity of decentralized control of
Markov decision processes / D. Bernstein, R. Givan, N. Immerman
et al. // Mathematics of Operations Research. — 2002. — No. 27 (4). —
P. 819-840. 8. The communicative multiagent team decision
problem: Analyzing teamwork theories and models / D. V. Pyna-
dath, M. Tambe // Journal of Artificial Intelligence Research. —
2002. — No. 16. — P. 389-423. 9. Taming decentralized POMDPs:
Towards efficient policy computation for multiagent settings / R. Nair,
M. Tambe, M. Yokoo et al. // Proceedings of the Eighteenth Interna-
tional Joint Conference on Artificial Intelligence, Acapulco, Mexico,
2003. — P. 705-711. 10. Learning to cooperate via policy search
/ L. Peshkin, K.-E. Kim, N. Meuleau et al. // Proceedings of the Six-
teenth Conference on Uncertainty in Avrtificial Intelligence, Stanford,
CA, 2000. — P. 489-496. 11. Distributed value functions / J. Schneider,
W.-K. Wong, A. Moore et al. // Proceedings of the Sixteenth Inter-
national Conference on Machine Learning. — San Francisco, CA, USA :
Morgan Kaufmann Publishers Inc., 1999 — P. 371-378. 12. Transi-
tion-independent decentralized Markov decision processes / R. Becker,
S. Zilberstein, V. Lesser et al. // Proceedings of the Second Interna-
tional Joint Conference on Autonomous Agents and Multi-Agent
Systems, Melbourne, Australia, 2003. — P. 41-48. 13. Hansen E.
Dynamic programming for partially observable stochastic games
/ E. Hansen, D. Bernstein, S. Zilberstein // Proceedings of the Nine-
teenth National Conference on Atrtificial Intelligence, San Jose,
California, 2004. — P. 709-715. 14. Pynadath D. V. The communicative
multiagent team decision problem: Analyzing teamwork theories
and models / D. V. Pynadath, M. Tambe // Journal of Artificial
Intelligence Research. — 2002. — No. 16. — P. 389-423. 15. Goldman C. V.
Decentralized Control of Cooperative Systems: Categorization and
Complexity Analysis / C. V. Goldman, S. Zilberstein // Journal of
Artificial Intelligence Research. — 2004. — Vol. 22. — P. 143-174.
16. Claus C. The dynamics of reinforcement learning in cooperative
multiagent systems / C. Claus, C. Boutilier // Proceedings of the
Fifteenth National Conference on Atrtificial Intelligence, Madison,
WI, 1998. — P. 746-752. 17. Boutilier C. Sequential optimality and
coordination in multiagent systems / C. Boutilier // Proceedings of
the Sixteenth International Joint Conference on Artificial Intelligence,
Stockholm, Sweden, 1999. — P. 478-485. 18. Vidal J. M. Fundamentals
of Multiagent Systems [Electronic resource] / J. M. Vidal. — S. I. : s. n.,

2007. — 155 p. ; Access mode : jmvidal.cse.sc.edu/papers/mas.pdf.
19. Niazi M. Agent-based computing from multiagent systems to
agent-based models: a visual survey / M. Niazi, A. Hussain // Sciento-
metrics. — 2011. — No. 89 (2), November. — P. 479-499. 20. Policy
Iteration for Decentralized Control of Markov Decision Processes
/ D. S. Bernstein, C. Amato, E. A. Hansen et al. // JAIR. — 2009. —
Vol. 34. — P. 89-132. 21. Sarne D. Sequential decision making in
parallel two-sided economic search / D. Sarne, T. Arponen // Pro-
ceedings of the Sixth International Joint Conference on Autonomous
Agents and Multiagent Systems. — Honolulu, NI, USA, 2007. —
May 14 — 18. — Art. No. 69. 22. Xiang Y. Probabilistic Reasoning in
Multiagent Systems: A Graphical Models Approach / Y. Xiang. —
Cambridge : Cambridge University Press, 2003. — 294 p. 23. Multi-
agent Scheduling: Models and Algorithms / A. Agnetis, J.-Ch. Billaut,
S. Gawiejnowicz et al. — Berlin ; Heidelberg : Springer-Verlag, 2014. —
271 p. 24. Policy lteration for Decentralized Control of Markov
Decision Processes / D. S. Bernstein, C. Amato, E. A. Hansen et al.
/I JAIR. — 2009. — Vol. 34. — P. 89-132. 25. Optimally Solving Dec-
POMDPs as Continuous-State MDPs / J. Steeve Dibangoye, Ch. Amato,
O. Buffet et al. // JAIR. — 2016. — Vol. 55. — P. 443-497.

Information about the authors

A. Milov — PhD in Engineering, Professor of Economic
Cybernetics Department of Simon Kuznets Kharkiv National Uni-
versity of Economics (9-A Nauky Ave., Kharkiv, Ukraine, 61166,
e-mail: oleksandr.milov@m.hneu.edu.ua).

S. Milevskiy — PhD in Economics, Associate Professor of
Economic Cybernetics Department of Simon Kuznets Kharkiv
National University of Economics (9-A Nauky Ave., Kharkiv,
Ukraine, 61166, e-mail: stanislav.milevskiy@m.hneu.edu.ua).

Indopmauis npo aBTopiB

MinoB Ogekcanap BonoauMupoBHy — KaHJ. TEXH. HAyK,
npodecop Kadeapu eKOHOMIYHOI KiOepHETHKH XapKiBCHKOTO HaIio-
HAJIBHOTO eKOHOMiuHOro yHiBepcurery imeni Cemena Kysuerst
(mpocn. Haykwu, 9-A, m. Xapkis, Ykpaina, 61166, e-mail: oleksandr.
milov@m.hneu.edu.ua).

MineBcbknii Cranicjaas BasepiiioBuy — kaHJI. €KOH. HayK,
JoLeHT Kadenpu eKOHOMIYHOi KiOepHeTHKH XapKiBCbKOTrO Hamio-
HAJIBHOTO eKOHOMiuHOro yHiBepcurery imeni Cemena Kysuerst
(nmpocn. Hayku, 9-A, m. Xapkis, Ykpaina, 61166, e-mail: stanislav.
milevskiy@m.hneu.edu.ua).

HNudpopmanust 06 apTopax

Mmunos Asexcanap BiagumMupoBH4 — KaHA. TEXH. HayK,
npodeccop kadenpbl IKOHOMHIECCKOH KHOSpHETHKH XapbKOBCKOTO
HaIMOHAIBHOTO 3KOHOMHYECKOro yHuBepcurera nmeHn Cemena Kys-
seua (npocr. Hayku, 9-A, r. Xapekos, Ykpauna, 61166, e-mail:
oleksandr.milov@m.hneu.edu.ua).

Mmuaesckuii Ctanucias BajiepbeBUY — KaHJI. 9KOH. HayK,
JIOLIEHT KadeIpbl SKOHOMUYECKOH KMOEepHETHKH XapbKOBCKOIO Ha-
LMOHAJILHOr0 SKOHOMUUECKOTo YHHBepcuTeTa mMeHn Cemena KysHena
(mpocm. Hayku, 9-A, r. Xapbkos, YkpanHa, 61166, e-mail: stanislav.
milevskiy@m.hneu.edu.ua).

Cmamms Haditiwna do ped.
05.05.2016 p.

<o T~



