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CORPORATE DECISION-MAKING MULTIAGENT MODELS 
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Any goal-oriented activity is related to decision-making, that is why intuitive understanding of the content and 

structure of decision-making problems is fairly obvious. Nevertheless, until now, there has not been developed a sufficiently 
general theory of decision-making. This is primarily caused by the diversity of the tasks of decision-making without 
explicit intersections in their formal structure and substantive content. Therefore, this research is limited to the class of 
problems where decisions are made by a variety of decision-makers between whom the information necessary for 
decision-making is distributed, and who operate in parallel interacting with each other in the decision-making process. 

Designing a structure of a decision-maker group interaction, and interactions between them for real time effective 
management of a complex, large-scale system has been discussed. The authors have attempted to combine, on the 
methodological level, the classic concept of decision-making, approaches to economic system distributed management 
and multiagent modelling. 

Thus, designing a structure in which problems of distributed control can be successfully presented has been 
described. 

The proposed approach is based on the assumption that none of the decision-makers have a complete and 
accessible to them system model. The proposed structure can be used for a corporate organization design in which 
a person is one of the resources for decision-making. 
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МУЛЬТИАГЕНТНІ МОДЕЛІ ПРИЙНЯТТЯ КОРПОРАТИВНИХ РІШЕНЬ  

 

Мілов О. В. 
Мілевський С. В. 

 
Будь-яка цілеорієнтована діяльність пов'язана із прийняттям рішень, тому інтуїтивні уявлення про 

зміст і структуру проблеми прийняття рішень досить очевидні. Проте до сьогодні не існує деякої досить 

загальної теорії прийняття рішень. Причини цього слід шукати, перш за все, у різноманітності завдань 

прийняття рішень, які не мають явних перетинів у їхній формальній структурі та змістовному наповненні. 

Тому справжню роботу обмежено класом тих завдань, у яких рішення приймає безліч осіб, між якими розпо-

ділено необхідну для прийняття рішення інформацію, і які функціонують паралельно, взаємодіють між собою  

у процесі прийняття рішення. 

Розглянуто проблему проектування структури взаємодії групи осіб, які приймають рішення, і взаємодій 

між ними для ефективного управління складною, великомасштабною системою в режимі реального часу. 

Авторами зроблено спробу на методологічному рівні об'єднати класичні концепції прийняття рішень і підходи 

до розподіленого управління економічними системами та мультиагентне моделювання. 

Все, что познается, имеет число, 

ибо невозможно ни понять ничего, 

ни познать без него. 

Пифагор 
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Таким чином, у роботі відображено процес проектування структури, у межах якої може бути успішно 

подано проблеми розподіленого управління. 
Запропонований підхід засновано на припущенні про те, що жодна з осіб, які приймають рішення, не має 

повної й доступної їй моделі системи. Запропоновану структуру може бути використано для проектування 
організації, у якій людина як один із ресурсів прийняття рішення. 

 
Ключові слова: мультиагентне моделювання, марківська модель прийняття рішення, структура сис-

теми, організаційне проектування, взаємодія агентів. 

 
 

МУЛЬТИАГЕНТНЫЕ МОДЕЛИ  

ПРИНЯТИЯ КОРПОРАТИВНЫХ РЕШЕНИЙ 

 

Милов А. В. 
Милевский С. В. 

 
Любая целеориентированная деятельность связана с принятием решений, поэтому интуитивные 

представления о содержании и структуре проблемы принятия решений достаточно очевидны. Тем не менее, 
до настоящего времени не существует некоторой достаточно общей теории принятия решений. Причины 
этого следует искать, прежде всего, в разнообразии задач принятия решений, не имеющих явных пере-
сечений в их формальной структуре и в содержательном наполнении. Поэтому настоящая работа ограни-
чивается классом тех задач, в которых решения принимаются множеством экономических агентов, между 
которыми распределена необходимая для принятия решения информация, и которые функционируют парал-
лельно, взаимодействуя между собой в процессе принятия решения.  

Рассмотрена проблема проектирования структуры взаимодействия группы агентов, принимающих 
решения, и взаимодействий между ними для эффективного управления сложной, крупномасштабной сис-
темой в режиме реального времени. Авторами предпринята попытка на методологическом уровне объ-
единить классические концепции принятия решений, подходы к распределенному управлению экономическими 
системами и мультиагентное моделирование. 

Таким образом, в работе отражен процесс проектирования структуры, в рамках которой могут быть 
успешно представлены проблемы распределенного управления. 

Предлагаемый подход основан на предположении о том, что никакой из агентов, принимающих реше-
ние, не имеет полной и доступной ему модели системы. Предлагаемая структура может использоваться 
для проектирования организационной структуры корпорации, в которой человек выступает в качестве од-
ного из ресурсов принятия решения. 

 
Ключевые слова: мультиагентное моделирование, марковская модель принятия решения, структура 

системы, организационное проектирование, взаимодействие агентов. 
 

 
Management decision-making in corporate structures 

can be considered as decentralized management carried out 
by a group of economic agents having a common global goal. 
Such a situation is characterized by the fact that no agent 
during their work has the possibility of monitoring the proces-
ses and the state of the whole system. The behavior of each 
of the agents can be characterized by independent observa-
tions and local target functions. Such a decision-making system 
can be described quite well by the models of Markov decision 
processes (MDPs). 

Recently, the indicated models have been adequately 
studied as a mathematical framework for consistent decision-
making in stochastic domains. In particular, the decision search 
planning problem for an individual agent in stochastic domains 
was modelled as partially observable Markov decision pro-
cesses (POMDPs) or fully observed MDPs [1 – 3]. For the 
considered planning problems the optimal scheduling plans 
can be found using the methods of operations research in 
relation to the corresponding Markov decision processes. 
Significant results in the decisions of individual MDPs were 
obtained using a domain structure [4; 5]. In [6] an approximation 

of MDPs is described, which suggests that the compensation 
function can be decomposed into local compensation functions, 
each of which is dependent on a small number of variables. 

Furthermore the authors are interested in a separate 
Markov decision process, which is jointly run by a set of 
decision-making agents. They cooperate in the sense that 
they only seek to maximize a global goal (or to minimize the 
cost of achieving it). However, each of the agents has no 
opportunity to monitor the entire system as a whole in the 
decision-making process. Similar processes are characteristic 
of many application areas, from individual production (enterprises) 
to multinational corporations. 

These processes are examples of decentralized partially 
observable Markov decision processes (DEC-POMDPs) or de-
centralized Markov decision processes (DEC-MDPs). Com-
plexity of decision search for these processes has been 
investigated in [7; 8]. In [9] an algorithm of a joint research 
strategy (JESP) is presented, which finds an optimal joint 
decision. In [10] the researchers made an attempt to explore 
the method of decentralized decisions based on the gradient 
descent approach for network learning when the system 
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model is unknown to the agents. The author of [11] suggests 
that every decision-making agent has an appointed task of 
local optimization. The following analysis shows how to create 
a global objective function for optimization of a problem when 
agents are free to exchange information about the values of 
their local extremes. 

A common feature of these papers is a rejection of the 
assumption that each agent has their known local compen-
sation function. Questions that they are trying to answer are 
how to configure or manage the local functions of remune-
ration to approximate the actual remuneration function of the 
entire system. 

The algorithm for finding an optimal decision in a de-
centralized corporate management structure is presented in [12]. 
The presented algorithm is implemented on the assumption of 
a certain remuneration function structure. The generalization 
of dynamic programming methods to find optimal structures of 
decentralized management decisions is described in [13]. 
Special class models DEC-POMDPs were reviewed and pre-
sented in [14]. In [15] a method of searching effective deci-
sions for this class of models was proposed. It is interesting to 
study the case of decentralized management, in which the 
agents share information about each other's actions during 
the off-line planning stage. A decision including a joint strategy 
of an only one possible action for each agent is presented in [16]. 
It makes sense to compare the obtained decisions with the 
decisions found for centralized multiagent systems, modelled 
as MDPs structures [17], where the planning stage (off-line), 
and the control stage (on-line) are carried out in a centralized 
system, where full observability is realized for all agents. 

Any goal-oriented activity is related to decision-making, 
so intuitive understanding of the content and structure of 
decision-making problems is fairly obvious. Nevertheless, until 
the present time, no sufficiently general theory of decision-
making has been developed. The roots of this should be 
primarily linked to the diversity of the decision-making tasks 
that have no explicit intersections in their formal structure and 
substantive content. A fairly complete review of these problems 
is contained, for example, in [18; 19]. It seems clear that it is 
hardly possible to build a universal theory, applicable to any 
problem of decision-making [20 – 22]. 

Therefore the authors have restricted themselves to 
the class of problems in which decisions are taken by eco-
nomic agents, among whom the information necessary to 
make decisions is distributed, and who operate in parallel, 
interacting with each other in the decision-making process. 

The research deals with the problem of the interaction 
framework design for decision agents and interactions bet-
ween them to effectively manage a complex corporate system 
in real time. An attempt has been made to combine the 
classic concept of decision-making approaches in the field of 
distributed control in economic systems and multiagent simu-
lation on the methodological level. 

The proposed approach is characterized by the fol-
lowing features: 

1) multidisciplinarity and conceptuality of the approach; 
2) the level of detailing that determines the applicability 

to solving any practical problem; 
3) transparency, which means that the proposed ap-

proach is one of many approaches that could be used to man-
age this problem. 

Thus, the structure design process has been de-
scribed, in which the processes of distributed control can be 
successfully implemented for a group of economic agents. 

The proposed approach is based on the assumption 
that none of the agents who make decisions, have an adequate 
model of the entire managed system. More specifically, each 
agent knows about the actions of only a single subsystem, for 

which he is an "expert", and meanwhile he does not know 
anything about the structure of the system beyond his domain. 
Assessing the impact of his decisions on the rest of the system 
and the influence of external to him decisions on the managed 
subsystem can only be obtained in the process of interaction 
with other agents like him. Thus, the process of management 
decision-making is distributed among the agents, and the 
coordination of planned activities to a large extent depends on 
the available resources of interaction. The proposed structure 
can be used for the design of an organization in which an 
economic agent acts as a resource for decision-making. 

Further consideration of multiagent modelling of pro-
cesses of management decision-making in corporate structures 
will be based on the combined use of four main concepts [23 – 25]: 

1) the Markov concept of a condition; 
2) the law of Bayes in the probability theory; 
3) the use of a global performance scalar index; 
4) dynamic programming. 
When these concepts are used for systems containing 

multiple decision agents, the following problems arise. 
Each agent can assess the conditional probability of 

the state of its own process, but dynamic programming requires 
the knowledge of conditional probabilities of the process state 
effects of other agents, coming in the form of input signals 
from other agents. That, in its turn, leads to a necessity for 
any agent to obtain models of other agents (which have  
a memory, at least in the form of conditional probability, and 
hence the state space), and for those and other agents to 
have knowledge about the models of the first agent (and models 
of their patterns), etc. With this approach, the problem of the 
optimal strategy formation for multiagent decentralized mana-
gement usually becomes difficult in this structure. 

One of the ways to overcome these limitations is to 
provide each model agent with only a part of the state space 
and the related dynamics. In this case models used by all the 
agents should represent the system as a whole, and each 
agent should know that all other parts of the system do exist 
and provide influence on the relevant part of the system. This 
logic of reasoning leads to the following formulation of the 
principle of corporate level management decision-making multi-
agent modelling: every decision-making agent has a limited 
model of the controlled system. 

Next, let us consider two agents interacting with each 
other so that the action of one agent ("A") directly affects the 
dynamics of the other one ("B"). There is a need for com-
munication between them. Agent "B" must notify agent "A" of 
the action taken by him, so that it could be possible to explain 
the actions arising from these consequences. Agent "A" must 
inform "B" about his goals, so that agent "B" could plan his 
own actions that could help agent "A" to achieve the goal set 
by him. Thus it is necessary to prevent strategies, where the 
channel with endless bandwidth is used for transmitting all 
messages to a single node that implements centralized con-
ventional strategy. Therefore, there must be formulated some 
limitations for relations of a particular type. 

If two agents have models that are almost opposite in 
their variables, the set of attributes, which they could 
exchange, of course, is limited. A common feature of the two 
agents, "A" and "B", is the set of interaction variables, pro-
duced by the agent, which affects the other. It is only common 
context that they have as a basis for communication. This 
reasoning leads to the formulation of the second principle of 
multiagent decision-making system modelling: "communi-
cation between agents is realized only with the use of vari-
ables directly related to the main interaction variables". 

The traditional approach to the distribution of the 
computing load between decision-making agents is to use 
iterative exchanges between them. This approach, while often 



ÌàòåìàòèЧí³ ìåòîäè, ìîäåë³  
òà ³íфîðìàö³йí³ òåõíîëîã³ї â åêîíîì³ö³ 

 

 

 

82 
effective, generally requires a significant bandwidth of the 
feedback means, since in each step several iterations must 
be performed to determine the current set of control inputs. 
For this reason, developed coordination and decision-making 
strategies of management decisions must take into account 
the following principle: "iterative methods, which suggest a 
connection between the agents at each step, must be avoided". 

Finally, the definition of the modelled structure itself 
ensures that the decision-making agents will be often missing 
information on many processes that can influence them. Thus 
a decision must be taken under conditions of uncertainty.  

The traditional approach in the case of decision-making 
under uncertainty is the assumption of the worst case (and the 
relevant criteria). It gives an attractive advantage to provide 
the autonomy to local decision-making agents: communication 
serves as a means for reaching agreements between two 
agents, limiting the actions of each of them. Each agent can 
be free to choose one of several alternatives within the agreed 
limits, knowing that another agent would consider his choice 
as a possible worst case for himself. Thus, the latter formulated 
principle is as follows: "uncertainty about the future actions of a de-
cision-making agent can be removed or by either messaging 
or a worst-case assumption". 

A distributed multiagent decision-making economic 
system can be defined as a tuple 

 
MAS = < A, E, R, ORG, ACT, COM, EV >, 

 
according to which it is understood as a set of agents 

A, which can operate in some environments E, which are in 

certain relations R and interacting with each other, forming  

a certain organization ORG, having a set of individual and joint 

actions ACT (strategies of behavior and actions), including 

possible communication actions COM, and characterized (as, 

indeed, individual agents) by capabilities for evolution EV. 

The decision-making system topology can be expres-

sed in graph G, which consists of a finite set of N-nodes and  

a set of L-arcs 

 
G = (N, L).      (1) 

 
For convenience, we assume that the nodes are 

numbered 1, 2, ..., | N | = N in some unique way. Arcs connect 

one node with another in one direction 

 
L  N  N,       (2) 

where (i, j)  L indicates the bond connecting node i to node j. 

G will reflect the basic dynamic effect of the i-agent 

subsystem on the j-agent subsystem. (Note that the agent i 

always affects the agent j, which is implicitly the owner of its 

own i-model). 

Each arc will represent not only a dynamic interaction, 
but also an appropriate interface in the decision-making 
structure. Since the graph is not necessarily bidirectional, no 
assumption about the symmetry of G is needed. 

The arcs represent relationships of subsystems to each 
other, modelled in each node, but we also need to consider 
their relation to the inputs, outputs and goals of the system. 

Inputs: each entry must be defined by one and only 
one agent (the one that models its direct impact). 

Outputs: each system output can similarly be only 
associated with a single agent, which models the formation of 
this output, based on the variables in the model of this agent. 

Goals: some agents bind specific goals with their own 
models. Other agents may have no individual goals – their 

function is to organize (coordinate) operations of other agents 
so that their goals could be achieved. 

This preserves a distinction between the decision 

agent in the node i, Ai, and the submodel which he has Mi. 

The model can include formal representation on how to interact 
with other agents, the strategy of behavior and actions of the 
agent as well as the possibility of the agent evolution. We 
introduce the concept of an agency decision-making system 

module DMi as a combination of the decision-making agent 

and the model of the subsystem he represents 
 

DMi = (Mi, Ai).         (3) 

 
This refers to an agent that makes decisions indepen-

dently of other agents, and which has a model of some sub-
system in which he is an "expert", and which has to commu-
nicate with other agents in order to achieve a desired level of 
the whole system functioning quality. 

Now we can say that the problem of distributed de-
cision-making is presented in the form of a multiagent module 

structure if the local models Mi and interaction relationships G 

are identified. Thus, the modular multiagent model is an ex-
tension of the classical model concept for the explicit forming 
of a distributed multiagent structure. 

Each local model Mi is complete in the sense that it 

has the Markov properties: there is a set of states Xi, but the 

local condition change function depends on the interaction 
variables that reflect the impact of parts of the system whose 
models are presented in other modules. Interaction variables 

are selected from the sets Zij, which reflect the impact of the 

subsystem, modelled in DMi, on the subsystem modelled in 

DMj. They are defined as the interaction function values on  

a set of states DMi as follows 

 

gij: Xi  Zij.                                    (4) 

 

The values that reflect the interaction zij for each state 

xi, gij functions are generally irreversible, i.e. there will be 

some pair 
1
ix  and 

2
ix , such as 

 

)()( 21
iijiij xgxg   for 

21
ii xx                   (5) 

 

for any i and j. In other words, it may be an expression in which 

it is impossible to uniquely reconstruct the condition. 
The management and monitoring spaces are defined 

as follows: 

Ui is the set of controls, from which one can select the 

module DMi; 

Yi is the set of measurements that can be obtained by 

the module DMi. 

Now the model Mi, which is owned by the DMi mo-

dule can be determined. Here is the tuple consisting of the fol-
lowing eight components: 

 

Xi is a set of the local states; 

{Zij} is the sets of an aggregated states; 

Ui is the set of inputs; 

Yi is the set of outputs;       (6) 

fi is the function for definition of the next state; 

hi is the function for definition of the next output; 

{gij} is aggregation functions; 

ci is the local cost function, 

where 

fi: XiZ1i...ZNiUi  Xi;  (7) 
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gij: Xi  Zij;      (8) 

hi: XiZ1i...ZNi  Yi;           (9) 

ci: XiXiZ1i...ZNiUi  R.  (10) 
 

Equation (7) expresses the constraint that reflects the 
fact that the transitions depend only on the local state and 
direct interaction with neighboring agents, as well as control 
variables; equation (9) does the same for the outputs. Equa-

tion (10) defines a local agent target function: ci(xi, 

ix , z1i, z2i, 

..., zNi, ui) is the cost of transition from the state xi at the time t 

to the state 
ix   at the time t+1, where interaction variables 

z1i, z2i, ..., zNi are present, and ui applies. (To simplify the 

notation, the vector ),...,,( 21 Niiii zzzz 


 can be entered as a com-

plete set of interaction variables, affecting the subsystem DMi). 
An important feature of the introduced formulation is 

that the concept of a centralized state was replaced by the 
notion of a set of local states. To determine the future local 

response Ai to the local inputs it is not enough to know only 

the local state xi; the knowledge of the other agents' future 
interactions is also necessary. Optimal strategies for decision 
search usually require a maximum possible amount of knowledge 
about the results of the possible decisions, it should be 
expected that the adoption of local decision will be based on 
the collected maximum of available information on the local 
state and future interactions. 

For further consideration, to simplify the process, we 

assume that the functions of surveillance hi implement the 
relationship "one to one": each agent at any time t knows the 
state and interaction variables with full certainty. This helps 
avoid complications introduced by the problem of evaluation, 
and allows focusing on the coordination problem. Let us make 
no assumptions about the relation of local goals and objectives 
of the organization as a whole, because it involves the con-
sideration of a broad class of organizational structures. The 
only important structure to be considered is a corporation, 
where all economic agents, decision-makers seek to minimize 
the sum of the local decision-making function values. 

It is necessary to mention two properties of the pre-
viously made statement. It is obvious, that the distributed model 
is a dynamic equivalent for a centralized model. However, the 
usual way to transfer deterministic approaches to the modelling 
of stochastic processes, which is based on the distribution of 
(conditional) probabilities as the realization of states and transi-
tions from state to state, has a serious limitation in the pre-
sented context. 

Building a centralized model, which is equivalent to a 
modular multiagent system is traditional, the original 
formulation is correct for the modelling and there is no 
fundamental incompatibility of these two types of models. 
However, in general, for a distributed multiagent model 
powers of various sets are much higher than the powers of 
the sets, used to determine the local models. The equivalent 
centralized model has sets of states, controls and outputs, 
which are the Cartesian product of the sets representing the 
individual states, controls and outputs. The function of state 
transitions in the centralized model is the direct product of 

local functions fi and gij aggregation functions. Thus, 
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where x and u are state and control of a centralized model. 
Similarly, 

))(()))(),((,)),(),((())(,),(()( 11111 tzhtztxhtztxhtytyty NNN 


))(()))(),((,)),(),((())(,),(()( 11111 tzhtztxhtztxhtytyty NNN 


 
for each zij(t)=gij(xi(t)). 

 
It can be proved that there is a corresponding centralized 

model with identical behavior, given by (11) and (12) for each 
modular multiagent model. 

It would be highly desirable to include in the modular 
multiagent models probabilistic effects, reflecting the stochastic 
processes. Many stochastic control problems can be reduced 
to a deterministic equivalents by selecting the appropriate 
state spaces (such as a probability functions lying in the state-
space base). This statement is limited to the case of certain 
information about the states (and interactions), and stochastic 
processes can be reflected only in the functions of the state 
transition, but not in the measurements. Stochastic matrices 
(graphs) of state transition replace the expression: 

 

))1(),1(),1(()(  tutztxftx iiii


           (13) 

 
by the conditional probability densities: 
 

))1(),1(),1(|)((  tutztxtxp iiiii


. (14) 

 
This, in particular, allows presenting a forecast of future 

interactions in the following form 
 

  ))(())(),(),(|)1(())1(( txptutztxtxptzp iiiiiij


,  (15) 

where the summation is performed over all xi(t + 1), so that 

 

))1(()1(  tzgtz iijij .  (16) 

 
Thus, any unit of the multiagent model, given by its 

input interactions, and the state at the time t, can calculate the 
probability distribution of its output states and interactions at 

the moment of time t + 1, using (14) and (15). In this case it 

would be desirable to repeat this process: considering a pro-

bability distribution of input interactions at the time t + 1, 
computed by other agents, the module can determine the output 

interactions in a next time t + 2, etc. 

The model presented above may be defined as a de-
terministic multiagent system with a variety of local states 

P(Xi), a variety of control Ui and the set of interactions P(Zij). 

In this case, on the given p(xi(0)), u() and p(zji()) for all  

j, i = 1, ..., N and 0 <  < t it is impossible to determine 

unequivocally p(xi(t)) and p(zij(t)). 
The difficulty arises from the fact that the interactions 

determined by the value of p(zji()), after some time, are cor-

related, which is ensured by the dynamics of DMj. 
In the construction of stochastic modular coordination 

algorithms the result is important, that DMi requires interaction 

sequences probability (i.e., density on t
jiZ ), instead of the pro-

posed sequence of interaction probabilities (i.e., the density of 

t on Zji), to predict the probability of a transition to local 

conditions and, therefore, the behavior of the entire multi-
agent system. Besides that, stochastic modules are equally 
suitable for the models as deterministic ones. 

The following conclusions can be drawn from the research. 
The key concept of the proposed approach is an indi-

vidual system component, a module, whose agent is an expert 
in the unique subsystem with respect to which he and only he 
has the most comprehensive knowledge, and for which he is 
responsible. 

 (11) 

 (12) 

, 



ÌàòåìàòèЧí³ ìåòîäè, ìîäåë³  
òà ³íфîðìàö³йí³ òåõíîëîã³ї â åêîíîì³ö³ 
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For modular multiagent systems some methods that 

support decision-making can be developed. A common approach 
to developing mechanisms for coordination is to select a se-
quence of interactions between the subsystems first, and then 
to solve local, relatively independent optimization problems. 

 
____________ 
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