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A combined quasi-Newton-type method is pre-
sented for solving degenerate unconstrained op-
timization problems, based on an orthogonal de-
composition of the Hessian approximation matrix
and division of the entire space into two orthogo-
nal subspaces. On one subspace (the kernel of the
Hessian approximation matrix), a method is ap-
plied where derivatives in the direction of the 4th
order are computed, while on the orthogonal
complement to it, a quasi-Newtonian method is
applied.
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Introduction. Unconstrained optimization methods are of
great importance in machine learning [1-5]. Currently, gra-
dient descent methods (such as ADAM [6]) are primarily
used in training neural networks because they are less com-
putationally intensive and require less memory. But gradi-
ent descent methods have a significant drawback, which is
a very low convergence rate [7, 8], especially for poorly
conditioned problems. Quasi-Newton optimization meth-
ods have much higher convergence rates, but they require
more memory and computational resources, although there
are memory-limited variants of quasi-Newton methods (L-
BFGS) [9] for moderately large dimensions. In the author's
opinion, as computational hardware becomes more power-
ful in the future, quasi-Newton optimization methods will
still be applied, both in machine learning in general and for
training neural networks as well.

In solving practical problems in machine learning, such
as tuning nonlinear regression models, the extremum point
of the selected optimality criterion is often found to be de-
generate, which significantly complicates its search. There-
fore, degenerate problems are the most challenging in opti-
mization. There is an even larger class of optimization
problems in which the objective function is poorly condi-
tioned in a neighborhood of the minimum point. Although
these problems are not formally degenerate, existing nu-
merical methods also have a low convergence rate in this
case.

Known numerical methods for solving the general un-
constrained optimization problem, up to the second order
inclusive, have very low convergence rate when solving
degenerate problems [7, 8]. This is because to significantly
increase the convergence rate in this case, it is necessary to
use derivatives of higher order than the second [10], but
this makes numerical methods very computationally ex-
pensive.

Despite the development of fairly efficient Newton and
quasi-Newton methods for unconstrained optimization [5,
7], interest in them has not waned [11-23]. In the case of
solving degenerate unconstrained optimization problems,
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an approach related to regularization of numerical methods is applied [11-18]. The essence of regularization
of a Newton-type or quasi-Newton-type numerical method is to make the Hessian matrix, or its approxima-
tion, positive definite. This allows the method to work in a degenerate case but does not provide the oppor-
tunity to solve the problem with high precision.

This paper aims to develop an efficient quasi-Newton method for solving degenerate unconstrained
optimization problems, the idea of which (unlike regularization) is to divide the entire space into the sum of
two orthogonal subspaces. This idea was introduced in [23]. The division of the space at each iteration of
the method is based on the spectral decomposition of the matrix approximating the Hessian of the objective
function by the Broyden—Fletcher—Goldfarb—Shanno (BFGS) formula [3]. On each of the subspaces, the
objective function exhibits distinct behavior, and therefore, an appropriate minimization method is applied
to it. Specifically, a combination of the quasi-Newton method and a method with computing derivatives of
the fourth order in the direction is used.

1. Combined quasi-Newton method
A degenerate unconstrained optimization problem is considered:
min f(x), xeR™, (1)

where f(x) is a function that is four times differentiable, for which there exists x* € R™ is a local minimum
point of the function f(x), and the Hessian matrix f ® (x*) is degenerate.

The quasi-Newton combined method for solving a problem (1) is proposed, which constructs an itera-
tive sequence of approximations to the minimum point according to the formula:

x D = (k) 4 akluik) + akzugk), k=01,2,.., 2
where x(® is the initial approximation of the minimum point, ugk), ugk) are orthogonal vectors, a;; > 0,

ag, > 0 are step multipliers along the respective directions uik), ugk). The vectors ugk), ugk) are deter-

mined as follows.
At each k™ iteration of the method, the matrix H;, which is an approximation of the Hessian matrix
£ @ (x1), is computed using the BFGS formula [3]:

Yive'  Hiese(Hesi)"

H =H, +
fort T Tk SkT Hysy

9H0=15 (3)

where s, = x® — x*=D 1y = g — gC=1) the vector g®) = FW(x(*)) and I is an identity matrix.
Since the matrix Hy, is symmetric, according to its spectral decomposition, it can be represented as

Hy = QA Qf, (4)

where Qy is an orthogonal matrix, 4, = diag (/15’”), and Agk)( i =1,...,n) are the eigenvalues of the matrix
H,,, ordered in descending order by absolute value.
Let's represent the diagonal matrix A, in a block form as follows

A1 O ]

=10 a,

where A, = diag(lgk)), Agk)| / |A§k)| >¢g, (i=1,..,1%), 1. <n,é& > 0isaparameter of the numerical

method at the k't iteration, Ay, = diag(/lgk)), Agk)| / |A§k)| <é&, (i=(0r+1),..,n). Then we can also

express the matrix Qy, in a block form as follows Q; = [ Qx1 Qk2], where Qy is a block of size n X 1y, ,
and Qg is a block of size n x (n — ry).
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Now, the matrix H, , in connection with (4), can be represented as follows:

le
AkZ ka
where Hye = Qr1fi1Qk1s Exe = QuaAr2Qkz = Hi — He-

Next, we construct orthogonal projectors: P, =1 — Qi1 QL, and P =1 — P, = Qu1QF; onto the
subspace Ker(Hy) = {x ER™|Hye x = 0} and its orthogonal complement, respectively. Note that the or-
thogonality of the matrix Q) implies that P, = Qx,QF,. Now, different optimization methods can be ap-
plied on the subspaces Ry, = Ker(Hy.) and R;; = R™ © R, (its orthogonal complement), depending on
the behavior of the function f(x) on them. In this case, the parameter &, > 0 serves as a criterion for divid-
ing the space into the orthogonal sum of two subspaces at each iteration. The algorithm for selecting this
parameter will be described below.

Now, let's define the orthogonal vectors u(k) and u(k) in the method (2).

First, consider the projection of the functlon f (x) onto the subspace Ry in a neighborhood of the point
x ), that is, the function f.; (uy) = f(x® + ), where the vector u; € Ry;. We approximate the function
fi1(uqy) by a Taylor series expansion up to the second order in a neighborhood of the point 0:

fir ) = £(x® +uy) = F(x®) + (PEg®,uy) +5 F@ @) [(uy)?].
Since H, is an approximation of f @ (x®)), H, = Hy, + Ej, from (5), Ex,u; = 0, then
fri(ug) = f(x(k)) + (Pich(k)»u1) + lHks[(uﬂz]-

Then the vector u, ) from (2) is determined as the point of the minimum of the approximation of the
function fi, (uq), i.e., from the equation:

A
Hy = [Qk1 ka][ - ] Qr1Mk1Qf1 + QuaMi2Qitz = Hie + Exe, (5)

af,;l—u(lul) ~ Prg" + Hyeuy =0,
from which we obtain:
ul? = —H{PEg® = —Quu AL QL PG ™, (6)

where Hy, is a pseudoinverse matrix of the matrix Hy,. This means we apply the quasi-Newton algorithm
over the orthogonal complement of the subspace Ker(Hy,).

Note that applying a similar approach to determine the vector u( ) in (2) on the subspace Ry, would
require calculating the full arrays of f®)(x®)and f® (x*)), which would be very labor-intensive. There-
fore, we will use a slightly different approach.

Let u = x — x¥ and make the change of variables u’ = Qfu . Then

T ’
u u
ka Qiau U
where uj = QF,u is a vector of dimension 7y, and u} = QF,u is a vector of dimension n — 7;.
Note that in the new coordinate system, the center coincides with the point x®) | the columns of the

matrix Q,f are the basis vectors, and the elements of the vector u’ = (Z}) are the coordinates. In this new
2

coordinate system, the entire space is already the product of two subspaces to which the vectors u; and ),
belong.
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Now, consider the projections of the function f(x) in a neighborhood of the point x® along the or-
thogonal vectors ¢ (i = (ry + 1), ..., n), i.e., the functions fi,;(a) = f (x(k) +a- q,((lz)) where a € R?
and q,(clz) is the i column of the matrix Q. Approximate the functions fi,;(a) by a Taylor series up to the
fourth order in a neighborhood of point 0:

i 1
far(@) = £ (x® + @ q3) = fizi(0) + @ ,57(0) + 5 a®£5) (0)+
1 3 1 4
+=a3£5)(0) +5-a*£5)(0). (7)

Now, let's define the elements u’zl-(k) of the vector u’z(k‘) as the points of minimum for the respective
approximations of the functions fj.,; ().

Sincefor i = (r, + 1), ...,n

20 = rO) [(49) ] = te + B (42) ] = B [(42) | = 2,

where |A§k)| < & |/’l§k)|, then for small g, it will be fk(zzi) (0) = 0. Therefore, according to [24], the necessary

fourth-order condition for the minimum point of the function f;,; (a) from (7) will be 3 equations:

[ @ = fS 0 +a 30 + 52,50 + 2?3 @ = 0, (8)

fig @ = [0 +a- £3)(0) +5a2£3)(0) = 0, ©)

HORAACORE OB (10)
From (10) and (9), it follows that f; (0) + a - £/ (0) = 0, and then from (8), we obtain

fS 0 +2a (30 =0,
and finally:
uh® = (—fSU O /B O3, i = (e + 1), . (12)

Since uj = QL,u, the vector ugk) from (2) is determined by the formula

k 1 (k
ul? = Q™. (12)

Derivatives up to the 4th order of the functions f,;(a) of the scalar variable « are the derivatives of

the function f (x) in the directions q,((lz) (i = (r, + 1), ...,n). These derivatives can be calculated using sym-
metric formulas:

—fr2i(2h) + 8fy2i(h) — 8fk2i(h) + fy2i(—2h)

(€] ~
i (0) = 121 (13)
fk(zzi)(o) ~ —fk2i(2h) + 16f15;(h) — 30{;2};’50) + 16fi2i(h) — fi2i(—2h) , (14)
(2R = 3Fipi(B) + 3ficai(R) — freni (—2h
fk(23i)(0) ~ fr2i(2h) = 3fiai( )‘;3 fr2i(h) = frai( )’ (15)
k(;i)(o) ~ fr2i(2h) = 4fi2i(h) + 6f12i(0) — 4fi2i(—h) + fi2i(—2h) (16)

h :
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where h > 0 is some small number called step size. As can be seen from formulas (13) — (16), this requires
only 4 additional values of the function f(x). Thus, to determine the vector ugk), an additional 4 x (n — 1)
computations of the objective function f(x) values are required, which, for small (n — r},), is not particu-
larly significant.

Also, note that when the sufficient condition for the 4th-order minimum formulated in [24] is met, the

values of -f,fz‘? (0) in a neighborhood of the minimum point will be strictly positive, making formula (11)
valid.

1.1. Calculation of Step Lengths

In method (2), (6), (11), (12), it is necessary to determine two step lengths: a4, and ay, along the
directions ugk) and ugk) respectively, in different orthogonal subspaces. On the one hand, this requires
additional computations, but on the other hand, it allows the method to progress in the subspace of the matrix
kernel H, independently of progress in the other subspace.

The results of numerical experiments have shown that the most effective algorithm for determining the
step lengths a4 and ay, is an algorithm similar to the method of coordinate descent [5, 6]. That is, initially,
the step length aj; > 0 is determined as the point of approximate minimum of the function
Yi(a) = fF(x® +a u§k>), and then the step length a;, > 0 is determined as the point of approximate
minimum of the function 1,(a) = f(x® + apy u + a u¥).

1.2. Selection of the regularization parameter for the quasi-Newton combined method

As mentioned earlier, the regularization parameter g, > 0 of the quasi-Newton combined method (2),
(6), (11), (12) serves as a criterion for dividing the space into the orthogonal sum of two subspaces at each
k™" iteration. It is clear that its value strongly affects the course of the iteration process. In the numerical
implementation of the method (2), (6), (11), (12), the following algorithm was applied to select the param-
eter g

Before applying the method, a range of possible values for &, > 0 is specified, for example,
[€min, €max] (in numMerical experiments, &, = 107 and &,,,4, = 1073 were taken). Initially, for k > 0,
&k = Emin 15 Chosen. Then, when the iteration process of the method (2), (6), (11), (12) slows down, i.e.,
| @D — x®|| /@ + || x**+D||) < 84rg, Where 84,5 > 0 is a given parameter (for example, 84y =
10719), &, isincreased so that the rank of the matrix H, ., becomes smaller on the next iteration, i.e., 73,4, <
.. The iteration process of the method (2), (6), (11), (12) is then continued. The iteration process of the
2|
e
clear that if, at all iterations, the condition number of the matrix H, satisfies cond (Hys) < 1/&max, then
the described method coincides with the ordinary quasi-Newton method.

method (2), (6), (11), (12) is completed when, on the k-th iteration, > €max- From this algorithm, it is

1.3. Analysis of the Convergence Rate of the Method

As the results of the numerical experiments presented in Section 3 show, the method (2), (6), (11), (12)
exhibits a faster convergence rate (requiring fewer iterations to achieve accuracy) when solving the degen-
erate problem (1) compared to the algorithms used for comparison. However, this article does not include
theoretical research on the convergence rate of the method (2), (6), (11), (12) in solving the degenerate
problem (1) due to limitations on the article's scope. It is worth emphasizing that sufficient conditions of
higher order for a degenerate minimum point can be applied for this purpose, as presented in [24], along
with an approach to analyzing the convergence rate of the method in the case of a degenerate problem (1),
as utilized in [25].
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2. Results of the Numerical Experiments

The quasi-Newton combined method (2), (6), (11), (12) for solving the degenerate problem (1) was
implemented in the Python environment. To ensure the stability of the method against divergence, negative
diagonal elements A¥ of the A, matrix in (4) were replaced by —A¥. The derivatives g® = FO®) were
numerically computed using the symmetric formula:

of (x) _ fCxlx; + hy) — f(x|x; — hy)
ax; 2h;
with a step size h; = hy - max(1, |x;]), where hy = 1077,

The method (2), (6), (11), (12) was tested on test functions for unconstrained optimization problems
from the collection presented in [26]. In total, this collection contains 75 functions, so only optimization
problems with degenerate minimum points were selected for testing the method. The numbering of the test
functions used corresponds to the numbering in the collection [26]:

4. Extended White & Holstl: f(x) = Z?z/f[(le- —x3;_1)? + (1 — x5;_1)?], the initial estimate is
x©® =(-1.2,1, ..., —1.2,1)7, the minimum point is x* = (1,1, ..., 1,1)7, the value of the objective func-
tion at the minimum point is f(x*) = 0, rank(f @ (x*)) =n — 1.

15. Extended Tridiagonal I: f(x) = Z?ﬁ(le-_l + xp; — 3)% + (x3i_1 — xp; + 1)*, the initial esti-
mate is x(©) = (2,2, ..., 2)7, the minimum point is x* = (1,2, ...,1,2)7, the value of the objective function
at the minimum point is f(x*) = 0, rank(f @ (x*)) =n — 1.

21. Extended Powell: f(x) = Z?z/f[(x4i_3 4+ 10x4;_5)% + 5(x4i—1 — X4;)% + (Xgi—p — 2x45-1)* +
+10(x4i—3 — x4i)4], the initial estimate is x(© = (3,—1,0,1,...,3,—1,0,1)7, the minimum point is x* =
= (0,0, ...,0,0)7, the value of the objective function at the minimum point is f(x*) =0,
rank(f @ (x*)) = n/2.

38. Extended Hiebert: f(x) = Z?ﬁ(le-_l — 10)? + (x2;_1X2; — 500)2, the initial estimate is x° =
= (0,0, ...,0)T, the minimum point is x* = (10,50, ..., 10,50)7, the value of the objective function at the
minimum point is f(x*) = 0, rank(f P (x*)) = n — 1.

45. Almost Perturbed Quartic: f(x) = (x; + x,)?/100 + ¥, ix;*, the initial estimate is x(®) =
= (0.5,0.5, ...,0.5)7, the minimum point is x* = (0,0, ..., 07, the value of the objective function at the
minimum point is f(x*) = 0, rank(f @ (x*)) « n.

58. GENROSNB (CUTE): f(x) = (x; — 1)® + X1, 100(x; — x;_1%)?, the initial estimate is x(®) =
=(-1.2,1,..,—1.2,1)T, the minimum point is x* = (1,1, ...,1, 1)7, the value of the objective function at
the minimum point is f(x*) = 0, rank(f @ (x*)) = n — 1.

Additionally, the following functions were taken for testing:

77. Mean-square approximation by polynomials: f(x) = ¥i2][¥i, x;0.01( — 1) —
-y x70.01( — 1)i‘1]2, the initial estimate is x(® = (2, 2, ..., 2), the minimum point is x* = (1, 1, ...,
1), the value of the objective function at the minimum point is f(x*) = 0, rank(f @ (x*)) = n — 1.

78. My function 1: f(x) = 1000(x; — 1000)? + 0.001x3 + Y™ o(x; — i)?, the initial estimate is
x(® = (100, ..., 100), the minimum point is x* = (1000, 0, 3, 4,..., ), the value of the objective function at
the minimum point is f(x*) = 0, rank(f @ (x*)) = n — 1.

79. My function 2: f(x) = x? + x,x% + x5 + Y, x2, the initial estimate is x(® = (10, 14, 10, ...,
10), the minimum point is x* = (0, 0, ..., 0, 0), the value of the objective function at the minimum point is
f(x*)=0,rank(f"(x*)) =n—1.

17)
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The numerical experiments were conducted for almost all functions for dimensions n = 4 and n = 400,
except for function 77, for which the dimensions were n = 5 and n = 400. Dimensions 4 and 5 were chosen
because they are classical dimensions for these functions. Dimension 400 was chosen to analyze the perfor-
mance of optimization procedures on problems with higher dimensions, as the results typically vary signif-
icantly between simple and complex problems.

The comparison was conducted with quasi-Newton procedures of mathematical packages: R, Python,
Scilab, MATLAB. The following abbreviations are used in Tables 1-9 to denote these procedures:

R is 'optim' procedure (method 'BFGS') from R Online Compiler;

Py is 'minimize’ procedure (method 'BFGS') from scipy version 1.11.4 (Google Colab);

Sc is 'optim' procedure (method 'gn’) from Scilab on cloud;

M is ‘fminunc’ procedure (method 'quasi-newton’) from MATLAB Online;

CQNAM is procedure implementing method (2), (6), (11), (12) in Python.

The search for the minimum point with all procedures was conducted with the highest possible
accuracy.

The results of the numerical experiments are presented in Tables 1-9, where:

Dx is the Euclidean norm ||X—x*||, where X is the obtained approximation of the solution by the opti-
mization procedure;

Df = |f (%) = f(x")I;

Nitr is a number of iterations performed,;

Nf is a number of function evaluations performed,;

Ngr is a number of gradient evaluations performed;

NormGr is the Euclidean norm || f M (®)]|;

code is the termination code returned by the respective optimization procedure.

In the CQNAM procedure, the termination code (code) takes the following values:

0 is the specified gradient accuracy is achieved (specified as 10-2°);

1 is the specified argument accuracy is achieved (specified as 107'%);

4 is maximum number of iterations is reached (set to 3000).

In the 'optim’ procedure (Scilab package), the termination code (err) takes the following values:

1 is "Norm of projected gradient lower than...";

5 is "Optim stops: maximum number of iterations is reached" (set to 3000);

9 is "End of optimization, successful completion™.

In the scipy.minimize procedure (Python), the termination code (message) takes the following values:

0 is "Optimization terminated successfully";

1 is "Desired error not necessarily achieved due to precision loss";

2 is "CG iterations didn't converge. The Hessian is not positive definite";

4 is "Maximum number of iterations has been exceeded” (set to 3000).

In the fminunc procedure (MATLAB package), the termination code (exitflag) takes the following
values:

5 is "Predicted decrease in the objective function was less than the FunctionTolerance tolerance™
(set to 1049),

The results of numerical experiments are presented in Tables 1-9. As seen from Tables 1-9, the worst
performance on all examples is observed with the 'fminunc' procedure from the MATLAB package. Next is
the 'optim' procedure from the R package. Better results are achieved with the 'scipy.minimize' procedure
(Python) and the 'optim' procedure from the Scilab package, although the ‘optim' procedure from the Scilab
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package performed poorly on function 38. It is also noteworthy that the algorithm of the 'scipy.minimize'
(Python) procedure requires more iterations to achieve the desired accuracy. Overall, the CQNAM proce-
dure (implementing the method presented in this paper) gives a decent result on almost all examples, while
applying significantly fewer iterations compared to other procedures. This is especially important for high
dimensions, as one numerical gradient computation according to formula (17) is equivalent to 2n function
evaluations. Although the CQNAM procedure uses a higher number of function evaluations on examples
21 and 45 compared to the 'optim' procedure from the Scilab package, it is still significantly fewer in the
total number of function evaluations considering both function and gradient evaluations. It should also be
noted that the high number of function evaluations by the CQNAM procedure on examples 21 and 45 is due
to the application of formulas (15), (16), as well as the fact that in examples 21 and 45, the rank of the
degenerate Hessian in a neighborhood of the minimum point is very high, namely, rank(f @ (x*)) = n/2.
Therefore, it can be concluded that the application of the method (2), (6), (11), (12) is most effective for
problems with a low rank of degeneracy of the Hessian in a neighborhood of the minimum point. In the case
of a large rank of Hessian degeneration in a neighborhood of the minimum point, it is better to apply the
variant of the method described in [23].

TABLE 1. Calculation results for the function 4 for n = 4 and n = 400 (rank(f® (x*)) = n — 1)

n=4 n =400
Dx Df Nitr Nf Ngr | NormGr | Code Dx Df Nitr Nf Ngr | NormGr | Code
R 3.6e-03 | 1.3e-06 167 | 55 0.25 4.0e-02 | 1.6e-04 2383 | 810 2.5
Py 4.0e-11 |1.6e-22 | 74 | 105 | 94 | 1.3e-13 1 |5.3e-10| 2.8e-20 (1733 | 2047 | 2047 | 3.6e-10 1
Sc 1.0e-07 {1.9e-15 | 41 80 9.3e-08 8 |1.5e-06| 2.1e-13 | 389 432 9.2e-10 9
M 3.9e-05 |1.5e-10 | 36 | 215 2.3e-06 5 |3.6e-04| 1.3e-08 45 | 22857 6.2e-04 5
CONAM 2.4e-15 |1.8e-30 | 44 | 275 | 45| 6.8e-14 1 |1.6e-13| 3.3e-27 | 668 |10571 | 669 |1.6e-12 1
TABLE 2. Calculation results for the function 15 for n = 4 and n = 400 (rank(f @ (x*)) =n — 1)
n=4 n =400
Dx Df Nitr Nf Ngr | NormGr | Code Dx Df Nitr Nf Ngr | NormGr | Code
R 2.6e-04 | 9.8e-15 83 | 66 | 6.1e-07 4.2e-09 | 1.8e-22 45 31]3.9e-11
Py 4.5e-09 | 8.6e-34 | 56 73| 73 1.0e-21 0 |9.7e-05 | 2.6e-18 | 124 194 | 187 |4.2e-12 1
Sc 3.0e-07 | 1.3e-26 | 52 | 278 1.5e-15 9 |2.6e-06 | 2.0e-24 63 537 2.4e-12 1
M 1.0e-05 | 2.5e-16 | 25 | 170 1.4e-08 5 |1.0e-04 | 2.5e-14 25| 14837 1.4e-07 5
CQONAM 7.9e-08 | 7.8e-29 | 35 | 196 | 36 1.2e-15 1 |3.1e-06 | 1.9e-24 39 300 40| 1.4e-14 1
TABLE 3. Calculation results for the function 21 for n = 4 and n = 400 (rank(f @ (x*)) = n/2)
n=4 n =400
Dx Df Nitr Nf Ngr | NormGr | Code Dx Df Nitr Nf Ngr NormGr | Code
R 5.0e-04 | 2.7e-13 320 |168 | 2.3e-06 4.4e-04 | 7.3e-16 1939 | 666 | 1.6e-06
Py 6.2e-07 | 1.7e-25 | 97 | 115 (103 | 2.0e-12 1 [9.8e-04 | 3.7e-14 | 3000| 3150 | 3150 | 6.5e-14 | 4
Sc 3.1e-09 | 9.7e-35 | 89 | 123 1.0e-22 0 |1.5e-06 | 1.5e-25 | 960 | 13977 46e-18 | 1
M 1.0e-05 | 2.5e-16 | 25 | 170 1.4e-08 5 |1.3e-02 | 1.1e-09 39| 19248 25e-04 | 5
CONAM 3.2e-08 | 9.4e-30 | 76 | 806 | 77 6.6e-16 1 |7.0e-06 | 5.9e-23 | 754 | 18204 | 755| 4.6e-16 | 1
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TABLE 4. Calculation results for the function 38 for n =4 and n = 400 (rank(f®(x*) =n-—1)

n==4 n =400
Dx Df |Nitr | Nf Ngr | NormGr | Code Dx Df | Nitr Nf Ngr NormGr | Code
R 5.4e-09 | 1.3e-18 313 | 120 | 3.80e-08 1.8e-09 |5.8e-19 5023 | 1617 | 6.9e-08
Py 0.0 0.0 |114 | 153 | 153 0.0 0 | 2.5e-09 |2.5e-19 | 2815 | 3242 | 3230 | 2.2e-10 | 1
Sc 2.4e-13 | 2.2e-27 | 94 | 165 3.9e-12 9 55156. | 100.1 | 3001 | 3551 29457 | 5
M 3.4e-07 | 2.7e-11 | 77 | 618 3.7e-06 5 | 2.8e-04 |5.8e-09 81 | 47719 2904 | 5
CQNAM 7.3e-15 | 3.1e-30 | 18 | 171 19 | 5.6e-13 1 | 4.1e-10 |6.7e-21 40 726 41 | 1.0e-10| 1
TABLE 5. Calculation results for the function 45 for n = 4 and n = 400 (rank(f @ (x*)) < n)
n=4 n =400
Dx Df  |Nitr Nf | Ngr |NormGr |[Code Dx Df Nitr Nf Ngr NormGr | Code
R 2.6e-04| 4.8e-15 62 48 | 3.1e-07 6.4e-04 | 1.1e-13 17158 {3000 | 1.2e-06
Py 1.9e-08| 9.8e-31 |142 | 218 | 206 |2.9e-17 1 (6.2e-04 | 7.3e-14 | 3000 | 3003 | 3003 | 5.8e-10 4
Sc 3.6e-13| 1.5e-50 |176 | 242 1.4e-30 1 (7.0e-07 | 7.7e-26 | 3001 | 3098 5.7e-19 1
M 7.1e-04| 1.5e-13 | 51 | 312 1.1e-30 | 5 |6.4e-04 | 1.0e-13 285 |115087 8.6e-10 5
CQNAM 2.2e-08| 2.2e-31 | 58 | 526 59 |4.0e-23 | 0 |2.6e-06 | 1.9e-23 | 1200 | 6624 1201 | 4.3e-17 1
TABLE 6. Calculation results for the function 58 for n = 4 and n = 400 (rank(f @ (x*)) = n — 1)
n=4 n =400
Dx Df  |Nitr Nf | Ngr |NormGr | Code Dx Df Nitr Nf Ngr NormGr | Code
R 1.2e-02| 1.9e-06 384 | 106 |6.8e-02 19.8 | 1.3e-04 1178 | 373 | 8.9e-02
Py 1.2e-10| 1.9e-22 |66 95 84 |2.4e-13 1 19.6 | 1.3e-08 | 3000 | 3943 | 3943 | 4.8e-05 | 4
Sc 2.0e-07| 9.2e-16 |66 | 133 1.3e-06 9 19.6 | 6.6e-09 | 3001 | 3760 1.1e-05 | 5
M 2.8e-04| 9.7e-10 |63 | 486 5.3e-05 5 19.7 | 5.3e-06 | 357 |192881 3.3e-03 | 5
CQONAM 8.1e-15| 7.8e-31 |55 | 202 56 |1.7e-15 1 19.6 | 4.9e-09 | 3000 | 16391 | 3001 | 6.6e-05 | 4

TABLE 7. Calculation results for the function 77 for n =5 (rank(f ® (x*)) = n) and n = 400 (rank (f ®(x*)) = n — 1)

n=>5 n =400
Dx Df Nitr Nf | Ngr |NormGr |Code Dx Df  |Nitr Nf Ngr NormGr | Code
R 5.2e-07| 1.0e-16 582 | 357 |1.2e-08 3.5e-06 | 5.8e-16 65 49| 1.9e-09
Py 1.8e-13| 4.1e-29 | 35 78 | 72 (1.8e-14 1 | 1.8e-02 | 5.8e-14 | 143 195| 183 6.9e-11 1
Sc 1.0e-12| 3.8e-28 | 27 51 2.6e-14 9 | 9.0e-07 | 4.8e-18 | 55 155 1.2e-11 9
M 1.3e-06| 9.5e-15 | 50 306 1.5e-13 5 | 3.7e-05 | 1.0e-13 | 91| 36892 1.0e-08 5
CQNAM, 1.2e-14| 5.8e-30 | 12 81| 13 |1.9e-14 1 | 1.8e-06 | 1.2e-19 | 39 564 40| 2.8e-11 1
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TABLE 8. Calculation results for the function 78 for n = 4 and n = 400 (rank(f @ (x*)) =n — 1)

n==4 n =400
Dx Df  [Nitr Nf | Ngr |[NormGr [Code Dx Df Nitr Nf Ngr NormGr | Code
R 3.7e-03| 2.0e-13 155 85 | 1.7e-09 1.8e-07 | 2.3e-25 74 56 | 9.7e-13
Py 1.5e-08| 5.2e-35 | 83| 175 | 168 |2.2e-16 2 | 2.7e-07 | 1.3e-29 | 81 163 | 158 | 3.3e-14 1
Sc 8.3e-14| 4.8e-56 116 | 772 44e-16 | 9 | 2.6e-06 | 7.9e-25 | 64 102 1.7e-12 9
M 1.0e-03| 5.5e-08 | 55| 320 2.5e-07 5 | 4.4e-03 | 5.6e-08 | 54 | 28872 1.1e-07 5
CQNAM 4.6e-08 | 4.5e-33 | 27 | 187 28 [2.1e-23 | 0 | 1.7e-11 9.4e-47 58 371 59 | 2.2e-14 1
TABLE 9. Calculation results for the function 79 for n = 4 and n = 400 (rank(f @ (x*)) =n — 1)
n=4 n =400
Dx Df  |Nitr Nf Ngr |NormGr |Code Dx Df Nitr Nf Ngr NormGr | Code
R 1.1e-05| 1.3e-20 75 57| 4.6e-09 4.6e-09 | 6.0e-22 59 43 | 4.9e-11
Py 1.6e-12| 2.2e-41 | 109| 261| 261|1.2e-21 | O | 7.7e-14 | 2.1e-41 | 112 129 | 129 |9.3e-21 0
Sc 1.4e-21| 3.3e-84 | 205| 225 4.2e-43 1| 1.2e-21 | 2.0e-84 | 274 | 3262 1.2e-42 1
M 7.1e-05| 2.5e-17 | 67| 365 3.0e-08 | 5 | 8.4e-05| 4.7e-16 | 85| 38496 3.3e-07 5
CQNAM 6.0e-09| 1.0e-33 | 42| 264 43| 1.1e-17 1| 15e-09 | 4.0e-36 | 54 319 55| 1.5e-19 1

Conclusion

The combined quasi-Newton method presented offers a solution for degenerate unconstrained optimi-
zation problems. It is based on an orthogonal decomposition of the approximate Hessian matrix and dividing
the entire space into two orthogonal subspaces. On one subspace (the kernel of the approximate Hessian
matrix), a fourth-order method is applied, while on its orthogonal complement, a quasi-Newton method is
utilized. Each of these subspaces employs a separate one-dimensional search to determine the step size in
the corresponding direction.

The idea of splitting the entire space into the sum of two (or more) orthogonal subspaces when solving
complex optimization problems is quite promising in terms of applying a combination of different numerical
methods on separate subspaces.

The effectiveness of the presented combined method is confirmed by numerical experiments conducted
on widely accepted test functions for unconstrained optimization problems. It is noteworthy that the pro-
posed method allows obtaining quite accurate solutions to test tasks in the case of degenerate minima with
significantly lower costs for computing the gradients of the objective function compared to optimization
procedures in well-known mathematical packages.

Plans include conducting theoretical research on the convergence rate of the presented combined
method in solving degenerate optimization problems (1).

There is hope that as computational technology becomes more efficient in the future, quasi-Newton
methods will be applied in solving optimization problems in machine learning. They have a much faster
convergence rate than gradient descent methods, especially in poorly conditioned and degenerate problems.
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Introduction. Methods of unconstrained optimization play a significant role in machine learning [1-6].
When solving practical problems in machine learning, such as tuning nonlinear regression models, the extremum
point of the chosen optimality criterion is often degenerate, which significantly complicates its search. Therefore,
degenerate problems are the most challenging in optimization. Known numerical methods for solving the general
unconstrained optimization problem, up to the second order, have very low convergence rates when solving
degenerate problems [7, 8]. This is explained by the fact that for a significant improvement in convergence rate
in this case, it is necessary to use higher-order derivatives in the method than the second order [10].

The purpose of the paper is to develop an efficient quasi-Newton method for solving degenerate uncon-
strained optimization problems, the idea of which (unlike regularization) involves dividing the entire space into
the sum of two orthogonal subspaces. This idea was introduced in [23]. The space division at each iteration of
the method is based on the spectral decomposition of the matrix approximating the Hessian of the objective
function using the BFGS formula [3]. Each subspace exhibits its own behavior of the objective function, and
therefore, an appropriate minimization method is applied on it.

Results. A combined quasi-Newton method is presented for solving degenerate unconstrained optimization
problems, based on orthogonal decomposition of the Hessian approximation matrix and division of the entire
space into the sum of two orthogonal subspaces. On one subspace (the kernel of the Hessian approximation
matrix), a method is applied where derivatives in the direction of the 4th order are computed, while on the or-
thogonal complement to it, a quasi-Newtonian method is applied. A separate one-dimensional search is applied
on each of these subspaces to determine the step multiplier in the respective direction.

The effectiveness of the presented combined method is confirmed by numerical experiments conducted on
widely accepted test functions for unconstrained optimization problems. The proposed method allows obtaining
fairly accurate solutions to test tasks in case of degeneracy of the minimum point with significantly lower com-
putational costs for gradient calculations compared to optimization procedures of well-known mathematical
packages.

Conclusions. The idea of dividing the entire space into the sum of two (or possibly more) orthogonal sub-
spaces when solving complex optimization problems is quite promising in terms of applying a combination of
different numerical methods on separate subspaces.

In the future, it is planned to conduct theoretical research on the convergence rate of the presented combined
method in solving degenerate unconstrained optimization problems.

Keywords: unconstrained optimization, quasi-Newton methods, degenerate minimum point, spectral
matrix decomposition, Machine Learning.
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B.M. 3agauun

Kom0inoBanuii MeTOl KBa3i-HbIOTOHOBCHKOI'O THITY 3 32CTOCYBAHHSAIM MOXiIHMX 10 HANPSI-
MKY 4-T0 NOPSAAKY /JIsl PO3B'AA3aHHA BUPOKEHHUX 337124 0e3yMOBHOI onTHUMi3allii

Xapxiecokuii Hayionanenutl exonomiunutl ynisepcumem imeni C. Kysneys, Ykpaina
Jlucmysanns: zadachinvm@gmail.com

Beryn. Metoau 6e3yMOBHOI ONTHMI3allii MalOTh BEJTMKE 3HAUCHHS y MAIIMHHOMY HaBuaHHi [ 1-6]. ITix yac
PO3B'sI3aHHS MPAKTUYHUX 337134 Y MAIIMHHOMY HaBYaHHI, HAIPUKJIAJ, TIPH HAJAIITYBaHHI perpeciiHuX HeNiHik-
HHX MOJIEJICH, TOUKa eKCTPEMyMy 0OpaHOTO KPHUTEPil0 ONTUMAIBHOCTI HEPIJKO BUSBIIAETHCS BUPOPKECHOIO, IO
3HAYHO ycKJanHioe ii momryk. Tomy came BHPODKEHHI 3a7a4i € HaWOUIbII CKIaJHUMU B ONTHMI3amii. Bigomi
YHCEeIIbHI METO/IM PO3B'sI3aHHS 3arajbHOI 3a1a4i 0e3yMOBHOT ONITUMI3Allii, 10 APYrOT0 MOPSKY BKIFOUHO, MAIOTh
Jy’Ke HU3bKY IMIBUAKICTb 301XKHOCTI B pa3i po3B's3aHHs BUPO/DKEHUX 3a1ad [7, 8]. Lle mosacHIOeTbCs TUM, 10 JUIS
ICTOTHOTO TiABHILCHHS MIBUAKOCTI 301KHOCTI B IIbOMY BHUIIa[IKy HEOOXiJTHO BUKOPHCTAHHS y METOJI MOXiTHHUX
O1Ib1I BUCOKOTO MOPSIIKY, HK Apyruii [10].

MeTa podotu. Po3pobieHHs e(heKTHBHOTO METOY KBa3i-HBIOTOHOBCHKOTO THITY ULl PO3B’SI3aHHS BHPO-
JOKEHHUX 3a/1a4 0e3yMOBHOI ONTHUMI3allii, i/1es SKoro (Ha BiMIiHY BiJ peryispusaiiii) mojsrae y mojijii BChoro
IPOCTOPY Ha CyMy ABOX OPTOrOHaNBHUX HianpocTopis. Ll ines Oyna npencrasnena B po6oti [23]. IToxain mpo-
CTOPY Ha KOXHIH iTepalii MeToly 3aCHOBaHO Ha CIIEKTPaJIbHOMY PO3KJIaJlaHHI MaTpPHUII, [0 HAOJIIKYE reccia
boBOIT QyHKIIT o Gopmyrni BFGS [3]. Ha koskHOMY MiIpocTOpi € CBOS MOBEIIHKA LITBOBOT (QYHKIIIT, i TOMY
Ha HbOMY 3aCTOCOBYETHCSI BIAMIOBIIHUM MeTo ] MiHiMizaIlii.

Pe3yabTaT. Po3pobiieHo KOMOIHOBaHUM METOJ| KBa3i-HbIOTOHOBCHKOTO TUILY JUIS PO3B'SI3aHHS BUPOJLKE-
HUX 3aJ1a4 0€3yMOBHOT ONTHUMI3alli1, 3aCHOBAaHUI HAa OPTOTOHAIILHOMY PO3KJIaJaHHI HaOImKeHHs MaTpHii [ecce
Ta MO/ BChOTO NPOCTOPY Ha CyMY JBOX OPTOTOHAJIBHUX MiAnpocTopiB. Ha oqHomy minnpocropi (siapi Habm-
JKeHHs1 MaTpHi ['ecce) 3aCTOCOBY€ETHCS METO/, B IKOMY OOUYHMCITIOIOTHCS MOX1/IHI M0 HAMPSIMKY 4-T0 HOPSIIKY, a
Ha OpPTOTOHAJBHOMY JOIOBHEHHI JI0 HHOTO — KBa3i-HBIOTOHOBCHKHI MeTo[. Ha KoKHOMY 3 IIHX IiJIpOCTOpiB
3aCTOCYBA€THCS OKPEMUI OTHOMIPHMH MOLIYK IS BU3HAUEHHSI KDOKOBOTO MHOXKHUKA Y BiANOBIAHOMY Hamps-
MKY.

EdexTHBHICTB MpeacTaBIeHOr0 KOMOIHOBAHOTO METOTY MiATBEPAXKYETHCS YUCEITbHIMHU EKCIIEPUMEHTaMH,
SKi OyJIH IIPOBEICH] Ha 3arajJbHONPUHHATHX TECTOBUX (YHKLIAX IS 3aga4 0e3yMOBHOI onTuMi3allii. 3anpormno-
HOBaHUI METO]] JO3BOJISIE OTPUMATH JOCHUTH TOYHI PO3B'SI3KH TECTOBUX 3aBIaHb y pa3i BUPOHKEHHS TOYKH MiHi-
MyMY 31 3HAYHO MEHIIIUMH 3aTpaTaMU Ha OOYHCIICHHS IPaJieHTIB UTbOBOT PYHKIIIT, HIX 1€ pOOJIATH IPOLIEAYPHU
ornTUMi3anii BIJOMUX MaTeEMaTHYHHX ITAKETIB.

BucHoBKH. [71es moziny BcbOro NpocTopy Ha cyMy ABOX (2 MOJKe i OibIle) OpTOrOHAJIBHUX ITiAIPOCTOPIB
i yac po3B’s3aHHS CKIIAHUX 3aa4 ONTHMI3alii € JOBOJI EPCIIEKTHBHOIO 3 TOYKH 30PY 3aCTOCYBaHHS KOMOI-
Hallil pi3HUX YHUCEIBHUX METOAIB Ha OKPEMUX MiJNIPOCTOPaXx.

B nopanemoMy IiaHyeThCsl MPOBECTH TEOPETUYHE JOCTIHKEHHS MIBUIAKOCTI 301KHOCTI MPEICTABIEHOTO
KOMOIHOBaHOT'O METO/y B pa3i pO3B'sA3aHHs BUPOKEHOT 3a/1a4i 0€3yMOBHOT ONTUMI3allii.

KniouoBi cioBa: Ge3yMOBHa ONTHMIi3allis, KBa3i-HBIOTOHOBCHKI METOIH, BUPOUKEHA TOUKa MIiHIMyMY,
CIeKTpallbHE PO3KIIaNaHHs MaTpuLi, Machine Learning.
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