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KOMBIHOBAHI METO/JU PO3B’SI3YBAHHS BUPOIKEHUX 3AJIAY
BE3YMOBHOI OIITUMI3AIIL

We present constructive second- and fourth-order methods for solving degenerate unconstrained optimization problems.
The fourth-order method applied in the present work is a combination of the Newton method and the method that uses
fourth-order derivatives. Our approach is based on the decomposition of R™ into the direct sum of the kernel of a Hessian
matrix and its orthogonal complement. The fourth-order method is applied to the kernel of the Hessian matrix, whereas the
Newton method is applied to its orthogonal complement. This method proves to be efficient in the case of a one-dimensional
kernel of the Hessian matrix. In order to get the second-order method, Newton’s method is combined with the steepest-
descent method. We study the efficiency of these methods and analyze their convergence rates. We also propose a new
adaptive combined quasi-Newton-type method (ACQNM) based on the use of the second- and fourth-order methods in the
degenerate case. The efficiency of ACQNM is demonstrated by analyzing an example of some most common test functions.

[pencraBineHo KOHCTPYKTHBHI METOAW APYTOro Ta YETBEPTOIO MOPSIKY IS PO3B’SI3yBaHHS BHPOIPKEHHX O0E3yMOBHHUX 3a-
a4 onTHMizamii. MeTon 4eTBepTOro MOpAAKY, KM MH BHKOPHCTOBYEMO, € KOMOiHaIi€o metony HproToHa Ta MeTomy,
10 BUKOPUCTOBYE MOXiJHI 4eTBepToro mopsaky. Hamr mixxix Gasyerscs Ha mpencracBieHHi R™ sk mpsMoi cymu sapa
Mmarpuni I'ecca Ta i oproroHamsHOro nonoBHeHHs. Jlo sapa marpumni 'ecca 3acTocoBaHO METON 4ETBEPTOTO MOPSAKY, a
JI0 OPTOTOHAJIBHOTO JOMOBHEHHs — Metox Hprotona. Lleit MeTon BUSIBISETHCS €(EKTUBHHMM Y BUIAAKY OXHOBHMIPHOTO
sapa Marpuii ['ecca. [y oTpruMaHHS METOLY APYToro Hmopsaaky, Metox HeroToHa KOMOIHY€THCS 3 METOZOM HAHKPYTILIOTO
ciycky. JlocmimpkeHo MpOayKTUBHICTh X METOIIB Ta MPOAHATI30BAaHO MIBHIKICTH iX 301KHOCTI. MU TakoX MPOMOHYEMO
HOBHUH aJIalTUBHUI KOMOiIHOBaHHI KBa3iHBIOTOHIBCHKUI MeTon (ACQNM), 110 BUKOPUCTOBY€E METOIH JIPYTOro Ta YeTBEp-
TOTO MOPSIIKY At BUpomkeHoro Bunanky. EpexrusHicte ACQNM moka3aHo Ha MPHUKIaAi JESIKHX HAWOUIBII MOMIMPEHNX
TECTOBUX (DYHKITIH.

1. Introduction. Unconstrained optimization has been extensively studied due to its particular
importance. Being applied in many nonlinear, constrained, multivariable optimization problems and
software design, unconstrained optimization is important from both theoretical and practical points
of view [6, 14, 15, 18, 19].

Practical problems often deal with the optimality criterion in the case of a degenerate extremum
point, which significantly complicates finding the solution. Most known numerical methods of
unconstrained optimization, even when using the second-order derivatives, have slow convergence in
the case of degenerate problems [2]. In order to improve the performance of a numerical method, it
is often helpful to use the higher-order derivatives [2, 22]. However, using the third- and fourth-order
derivatives makes the numerical method rather complicated.

Fairly effective Newton’s and quasi-Newton methods of unconstrained optimization were described
in [3] and still draw significant attention [4, 7, 8, 11-13, 16, 17, 20, 23, 27-30]. The significant
attention given to Newton’s and quasi-Newton methods stems from their efficiency, global convergence
properties, and their applicability to a wide range of optimization problems. Quasi-Newton methods
are used to overcome computational challenges associated with calculating the exact Hessian matrix.
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For solving degenerate unconstrained optimization problems there was often used an approach based
on regularization of numerical methods [11, 20, 27 -30].

The main goal of this paper is to present constructive second- and fourth-order numerical
methods for solving degenerate unconstrained optimization problems. Our approach is based on
the decomposition of the entire space as the direct sum of the kernel and the column space of the
Hessian matrix, the idea of which was given in [25]. In contrast to [25], a numerically stable spectral
decomposition of the Hessian matrix is used instead of the Cholesky factorization [26]. This is crucial,
especially in the neighborhood of a degenerate minimum point, as even small computational errors
can significantly disrupt the iterative process. The approach of decomposing the entire space into a
sum of orthogonal subspaces is also interesting because it allows for the use of different methods on
different subspaces. A Newton-like method is applied on one subspace, while another method is used
on the other subspace. To analyze the convergence rate of these methods, the generalized necessary
and sufficient conditions for a minimum of a degenerate unconstrained optimization problem proposed
in [24] are used. These conditions are slightly different from the higher-order optimality conditions
given in [9, 10], which makes them more convenient for analyzing the convergence rate of the
optimization methods in the case of a degenerate minimum point.

This paper is organized as follows. In Section 2, the idea of a family of combined methods for
solving degenerate unconstrained optimization problems, which is based on the spectral decomposition
of the Hessian matrix, is described. Then, as an implementation of this idea, a second-order combined
method is presented in Subsection 2.1. A fourth-order method variant is presented in Subsection 2.2.
Subsection 2.3 proposes an algorithm for finding two step sizes for these methods. Subsection 2.4
analyzes the convergence rate of the presented methods in the neighborhood of the degenerate
minimum point under sufficient fourth-order minimum point conditions from [24]. In Section 3,
the possibility of using quasi-Newton’s variants of the previously described theoretical methods is
considered. In Section 4, a practical adaptive algorithm is proposed, which combines the well-known
BFGS method with the methods described above. Such an algorithm allows adaptation to changes in
the behavior of the objective function during the process of finding minimum. Section 5 presents the
results of testing the proposed adaptive algorithm.

2. Combined methods. Consider the degenerate problem of unconstrained optimization
min f(x), =z €R", (1)

where f(x) is a p, p > 4, times differentiable function.

Let * € R™ be a local minimum point of the function f(z). Assume that the Hessian matrix
f@)(x*) is degenerate, but it does not vanish identically.

The following notation is used [24]: Ry = Ker (f?(z*)) = {z € R* | @ (2*)z = 0} is the
kernel of the Hessian matrix f(?)(z*); Ry is an orthogonal complement of the subspace R; (that is,
R™ = R; ® Ry ); P is an orthogonal projector onto the subspace Ri; P~ is an orthogonal projector
onto the subspace Ry; f()(z*) is the Ith derivative of f(z) at the point z*; f()(z*)[u’,v'7] is a
multilinear form of [ arguments u, v € R™ (the superscripts ¢ and (I — i) indicate the multiplicity of
the corresponding argument). Note that the value of a symmetric multilinear form is invariant under
various permutations of the arguments.
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COMBINED METHODS FOR SOLVING DEGENERATE UNCONSTRAINED OPTIMIZATION PROBLEMS 697

In addition, let R(M”? denote the (n x n x ... x n)-dimensional space of (g) -dimensional

arrays. Therefore, f (%H)(m*) can be considered as a linear mapping from RMW"? o R, Moreover,

T T
(f(g+1)(x*)) is a linear mapping from R™ to R(™”"*. Note that £ (2*) and (f(§+1)(x*))

are conjugate. In addition, f®) (z*) can be looked upon as a linear mapping from RO to R(”)p/Q,

that is, the value of the multilinear form f)(z*)[u”] = UT f)(a*)U, where U € R(")p/Q, is a
(g) -dimensional matrix with elements U; ; 1 = u;u; ... ug.

Now we develop some second and higher-order combined methods for solving the degenerate
problem (1). Consider an infinite sequence of iterates {x(¥)} defined as follows:

gD = (k) 4 akluﬁk) + Oékzugk), k=0,1,2,..., )

(k) (k)

where z(©) is an initial approximation of the minimum point, u;’, u, ’ are orthogonal vectors, and

ag1 > 0 and ago > 0 are step sizes along the directions ugk), ugk). At each step the method involves

taking uék) e Ker (f®(z*))) and the vector ugk) that belongs to the orthogonal complement of
Ker () (a(®)).

To correctly determine the rank of the matrix Hj, = (2 (x(’“)) and find the orthogonal projectors
onto the corresponding subspaces, the following approach is considered.

Since the matrix Hj is symmetric, according to the spectral decomposition [21], it can be
factorized as

Hy, = QrArQF, 3)
where @)y is an orthogonal matrix, Ay = diag ()\Ek)) is a diagonal matrix whose diagonal elements
)\Ek), 1 = 1,...,n, are the eigenvalues of the matrix Hy, sorted in descending order by absolute
value.

The eigenvalues of Hj, can be rearranged to present Ay in the form

A Apr O @
k = )

A2
where Ay = diag (/\gk)), ]/\gk)] >e, i=1,...,7, 1 <mn, € >0 is a regularization parameter of

the numerical method [3], Axy = diag ()\Ek)), |)\£k)| <e,i=(rp+1),...,n. Then the matrix Qy
is also partitioned into two blocks Q) = [le ng}, where Q1 is an (n X 7 )-matrix, Qg2 is an
((n — rg) X n)-matrix.

By using (3) and (4), we obtain the following:

Akl 0 le
Hpy=[Qmu Q] A ] o= Qr1Ak1QF + Qralk2Qly = Hye + Eje,
k2 k2

where Hye = Qi Au1 Q3. Ere = QroloQry = Hy, — He.

Thus, we have constructed the orthogonal projectors P, = I — Q1 Q% and Pt =1 — P, =
QMQ% (where I is an identity matrix) onto the subspace Ker (Hy.) = {z € R" | Hgex = 0} and
the orthogonal complement of it, respectively. Note that from the orthogonality of the matrix @y, it
follows that P, = ngQ{Q.
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2.1. Second-order combined method. Let us put g®) = f(U(z(*)). The function f(z), in a
neighborhood of z(¥), is approximated by the following function:

fra(2) = fra(ur,uz) = f(a®) + (PHg™, w)

+ (Peg®, ) + 5 Hie[()”] + 36QuQba[(02)?), )

which is obtained from the second-order Taylor approximation after replacing the matrix Fj. with
the matrix eQx2Q%, = Py, and using x — 2®) =y + ug, ug= Ptz — ), up= Pp(x — 2#),
Hkau2 = O, Pkul =0.

Then the vectors ugk), ugk) from (2) are determined as the minimum point of the function

fr2(u1,u2). Therefore, they satisfy the following system of equations:

O fro(ur, u
M _ pklg(k) + Hypeup =0, (6)
Bul
0 ;
Uil wa) _ p o) 4 ¢y = 0, (7)
6u2
From the equation (6), it is deduced that vy = —H ,;;Pkl %), where H ,:; is a pseudoinverse matrix [5]

of the matrix Hy.. Therefore, from (3) and the orthogonality of the matrix ), it follows that
HE = (QF) A (Qr)™ = QrAy @QF. Thus,

k _
ug )= _Hl;t:PkLg(k) = _leAkllelpkLg(k)' ®)
Finally, the vector us is easily obtained from the equation (7):
ug? = —e~1 P, ©)

Note that the method described by (2), (8), (9) for solving the degenerate problem (1) is a
combination of Newton’s method and the method of steepest descent. At each kth iteration, the
entire space R" is represented as the direct sum of two subspaces Ker (Hy:) and the orthogonal
complement of Ker (H.). The method of steepest descent is applied to Ker (Hy.), and Newton’s
method is applied to the orthogonal complement of Ker (Hy. ). Moreover, the regularization parameter
of the numerical method ¢ is used to divide the entire space into two orthogonal subspaces. This
leads us to the problem of determining two step sizes ax; and apo involved in (2).

2.2. Fourth-order combined method. This subsection considers an optimization technique that
requires the third- and fourth-order derivatives information. Generally, calculation of higher-order
derivatives is time consuming. From practical point of view, such methods are often not very useful
despite their theoretical significance. However, if the kernel of the Hessian matrix is one-dimensional
(that is, rank (Hy.) = n — 1), this approach becomes quite effective.

First, f(k) is approximated in a neighborhood of z(*) by the following function:

Fra(@) = fra(ur,uz) = f(@®) + (PHg™, w) + (Pog™, uz) + %Hka[(ul)Q] + %Ek[(uﬁﬂ

+ IO, ()] + 21O @) ()] + 5D @) ()
(10)

ISSN 1027-3190. Ykp. mam. scypn., 2024, m. 76, Ne 5



COMBINED METHODS FOR SOLVING DEGENERATE UNCONSTRAINED OPTIMIZATION PROBLEMS 699

Algorithm 1. Second-order combined method

Input: initial point 2(?); regularization parameter £ > 0; algorithm of one-dimensional minimization
OneDimMin (which is given in Subsection 2.3); algorithm of spectral decomposition of a matrix eigen
(which is a standard function in R); maximum number of iterations K; by the gradient tool grad > 0;
accuracy by the argument tool arg > 0; accuracy by the function tool fun > 0.
I: initialization: k = 0; fo = f(z(©); ¢© = fM (). Hy = f@(2(0),

while ||¢*)|| > tool grad:

(Ak, Qi) = eigen (Hy, symmetric = TRUE), Ay = diag (Agk), )\( )) )\(k) > )\§+)1Vz;
initialization: r; = 0;
for i =0,...,n:

if \)\Ek)| > ¢ then i, = 1}, + 1;

if AF) < —c then AY = AP,

)

if r, = n then

ul?) = —QuA QF ™)
10: oy, is determined as a minimum point of the function of one variable @1 (o) = f(z*) +au(®)
with the initial approximation ap = 1

[og, z*+D £ 1] = OneDimMin(z®), £, u® 1),

R R A A

11: else
Ap 0
12: Qr=[Qn  Qrz),Ap = [ 0 Ak2:|
13: ( —leA leg (k 1Qk2Qk29

14: oy is determined as a minimum point of the function of one variable ¢y (a) = f(z*) + ozugk))
with the initial approximation og = 1
[oer, 25D friq] = OneDimMin(aj(k),fk,ugk), 1), where z:(++1) = (k)+ak1u§’“),fk+1 —
FEHH);
o is determined as a minimum point of the function of one variable py(ar) = f(z®) +
aklugk) + augk)) with the initial approximation cg = max (1, a(x—1),2);
[ako, z* D £ 1] = OneDimMin (2(-+1), fk_t'_]_,ugk),max(1,0[(k_1)72));
150 if [z D — 20| /(1 4 |*+D|]) < tool arg then break with code = 1;
16: if | fx4r1 — fel/(1 4+ |fe+1]) < tool fun then break with code = 2;
17: 2®) = oW fi= frps k= k41 g% = fO(®);
18: if ||g®)|| < tool grad then break with code=0;
19: if £ > K then break with code = 3;
20: Hy, = f&(aW);
Output: last k), fr, g(’“), k.

Approximation (10) is obtained by the fourth-order Taylor expansion

£() = S®) + (g9, = W) + S FO) [ - 2y
+ 2O (2 - )] + o f D) [z - o)) + O (e — ),
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and by using the fact that z — ®) = u; 4+ us, u; = PkJ‘(:L' — m(k)), ug = Py(z — ZL'(k)), Hy us =0,
and Fjuy = 0. Tgnore the terms é FO (@) [(uy)?], % F® (20 [(uy)2, us), i FO (@) ()]
and the terms of higher order O(||u1]|?), O(|lu1||||uzl|?), O(||uz||*) to get (10).

Second, the vectors ugk), ugk) are defined as the minimum point of the function fr4(u1,us2).

Thus, ugk), ugk) satisfy the system of equations:

W — pklg(k) + Hpoup + %Pka(ii)(x(k)) [(UQ)Q] =0, (11)
1
W = Pkg(k) + Ejeug + f(g) (w(k))[uh us)]

2

+ %f(zs) (:c(k)) [(u2)2] + éf(zl) ($(k)) [(u2)3] —0 (12)

Note that (11) is linear in w; and (12) is cubic in uy and can be easily simplified. Using (11), u; is
expressed in terms of usg:

1
w = —H,"Ptg®™ — SHi F(@®) [(u2)?]. (13)
Substituting the expression for u; from (13) into (12), we get

1
Piyg™ + Egeus + P f®) (z*)) [(—H,;ZP;ig(’“) - §H;:;f(3) (™) [(u2)?]), uz)

# 3RO GO (we)] + TR ) (1)) =0

Finally, uso is determined from

1
Peg™ + Breug — Prf® (2™ [(HLPg™), ua] + §Pkf(3) (2)[(u2)?)

F PO W) = 3(/O )T SO @) [(w2)"] = 0. (14)
System (14) can be solved numerically, for example, by Newton’s method. Note that the matrix
coefficient of (u2)® corresponds to the sufficient condition for a minimum of the 4th order (2.20)
in [24].

Practical implementation of this method proved to be difficult in view of necessity to calculate
the derivatives of the function f(z) up to the fourth-order and to solve the system (14).

Consider the case of the one-dimensional kernel of the Hessian matrix in a neighborhood of the
minimum point, that is, rank (Hy.) = rp =n — 1.

Lemma 2.1. Suppose that rank (Hy.) = ri = n — 1. Then the solution of the system (14) can
be represented in the form

wp=p-s-q™, (15)
where qlin) is the last nth column of the matrix Qi given by (3), s = sign((g(k))quin)), pw <0
satisfies the following cubic equation
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o+ bu+ %c;ﬁ + éd/ﬁ =0 (16)
3
with the coefficients o = ‘(g(k) T ( ) , b= )\ (leAk1 leg NTyk) e = 3850(30), d =
a
9% x(0 ~ n 0%0(0
( 52(4) - 3<y<’f>>TQmAka£1y<k>>, where () = f(a® + ag"), y*) = aa(z)’ 0e) =

P0G 4 agf?),
Proof. Since rank (Hy.) = n — 1, the dimension of Ker (Hy,) is equal to 1, and Qxe = q](gn).
Moreover, the orthogonal projector onto the subspace Ker (Hy.) is Py = q,g") (q,(cn))T and Ej. =

q,g") )\glk) (q,g"))T.Thus, any vector ug that belongs to Ker (Hy.) is collinear with the vector q,g,n), and

therefore uy can be represented in the form (15). In addition, if the constant 4 is negative, then the
descent direction condition will hold for the vector us:

(9" uy = (Prg®) T uy = Hsjgn((g(k))qu(cn))(Pkg(k))qu(in)
= MSign((g(k))Tqé"))(g( ))T (n) (qlg ))qu(Cn)
= psign((g®)7gy"”) (g™ qf" = | (™) q”| < 0.

Thus, it remains to determine the constant p < 0. Substitute ug, given by (15) into (14) to get
n n 1 n)\ 2
Pig®™ + psBreq” — nsPof @ () [(HEPEg™), g + S PR f P (@) [(a)?]

+ 5P (FD @) = 3(7O @ 0) T HE O ) [(6)] = 0. a”

Performing scalar product on both sides of the system (17) with the same vector sq,g") gives the

following cubic equation for the scalar p < 0:

1 1
a—+bu+ 50;3 + gd;f’ =0, (18)

where a = ‘ PgH)T (n‘ = } g(k T (n)‘ b = )\(k) f(B)(m(k))[(H+PJ- (k )) (q,(cn)) ], c =
sf@ @) [(M™)%], d = (F®@®) = 3(fO (@®) T HEF® (20)) [(¢I™)4]. The coefficient d

in (18) must be positive when the sufficient condition for a minimum of the 4th order (2.20) in [24]
is satisfied.
Note that the value of the multilinear form f®) (z(*)) [(q,(c"))‘l] is equal to the value of the fourth

directional derivative of the function f(z) at the point z(*) in the direction of the vector q,(fn), that

4
is, F®(@W)[ (™)1 = 9 ai(f), where (@) = f(z® + ag!™), a € RL. Similarly, the value of

the multilinear form f(3) (a:(k)) [(q,gn))s] is equal to the value of the third directional derivative of the

3
function f(z) at the point #(¥) in the direction of ¢\, that is, @ (! )[(q,(cn))g] = a({;i(;)).
Therefore, let us denote

y® = O M) [(¢)?]. (19)
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Then

*¢(0)
oad ’

b= )\7(1/6) _ (ngzpﬁg(k))Ty(k) — )\gc) _ (leA&lelg(k))Ty(k), c—s

9%(0) 0%¢(0) -
d= ( Dol 3(y(k))TH,;zy(k)> = (W - 3(y(’“))TQk1Aka£1y(’“)>-
The lemma is proved.
Lemma 2.2. The vector ui, as a component of the solution u = w1 + ug of the system (11),
(12), can be computed using the formula

2
w = —Qr Ay Qh (g“‘f) + ’;y<k>>, (20)

where 1 < 0 is a solution of the cubic equation (16), y*) is given by (19).
Proof. By using (13) and (15), we get

2 2
H n)\2 H
w = ~HEPEgY = T HL SO @) ()] = —HLRrg® - Y

2

2
= —Hj, (P;ig(’“ + éy““) = QA Qh <g<k> + ‘;y<k>).

So, equality (20) holds.

4 3
Formulas (15), (16), and (20) contain the derivatives 9 8¢E10) , 9 82(30) ,and also f©) (z(¥) [(ql(c"))ﬁ )

In practical implementation of the fourth-order method, these derivatives can be calculated numerically,
for example, by the formulas
*(0) _ po(2h) — 4po(h) + 600(0) — 4po(—h) + wo(—2h)

~

Oat h4 ’
P*p(0) ~ ©wo(2h) — 2¢0(h) + 2¢po(—h) — po(—2h)
Oa3 2h3 ’

where h > 0 is some small number called step size. Recall that the vector y*) = f(3) (z(¥)) [(q,in))2]

is, in fact, the second directional derivative of the vector function f(!)(x) at the point (%) in the direct-

2
on ot . So. £ (7)) — 29,

ygk), i=1,...,n, of the vector y*) can be calculated numerically, for example, by one of two formu-

W _ 0i(h) = 26:0) + 6i(=h) o fOE +hg") — 27D (@®) + O (20 — hg)
P h2 y Y ~ h?

2.3. Algorithms for determining Step Sizes. First, consider the second-order combined method
described by (2), (8), and (9) for solving the degenerate problem (1). We propose an algorithm to
determine the step sizes a1 > 0 and ago > 0 involved in (2) for the combined second-order method.
This algorithm is based on the idea similar to the Hooke —Jeeves method for solving unconstrained
optimization problems.

Initially, the step size &y > 0 is defined as a minimum point of the function of one variable

where 0(a) = I (2 4 aqli”)). Then the elements

las y

o1(a) = flz®) + augk)). Secondly, the step size Ay > 0 is defined as a minimum point of the

function of one variable wo(a) = f(z*) + o?klugk) + augk)). Afterwards, the step size o > 0 is
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Algorithm 2. Fourth-order combined method

Input: initial point 2°; regularization parameter ¢ > 0; algorithm one-dimensional minimization
OneDimMin (which is given in Subsection 2.3); algorithm of spectral decomposition of a matrix
eigen (which is a standard function in R); maximum number of iterations K; accuracy by the gradient
tool_grad > 0; accuracy by the argument tool arg > 0; accuracy by the function tool fun > 0.
1: Initialization: k = 0; fo = f(z(©); (@ = fW (2O, Hy = @) (20,

while ||g¥)|| > tool grad :

(Ak, Qx) = eigen (Hy, symmetric = TRUE), Ay = diag ()\gk), A /\%k)), /\Z(»k) > /\l(»i)l;
initialization: r; = O;
for:=0,...,n:

it [A\M| > ¢ then rj, =1y + 1;

if AF) < —¢ then AP = A,
if r, = n then

u®) = —QrA; ' QE g™,

A A A

10: else
A 0
11: Qr=[Qm  Qr2), Ap = [ Sl Ak2:|

12: calculate arrays f(g)(x("’)), f(4)(x(k));
(k)

13: ugy ~ 1s determined as a solution of system (14);
14: ul is calculated by (13);
15: uk) = ugk) + u;k);

16: ay, is determined as a minimum point of the function of one variable p3(a) = f(z*) 4+ au®)
with the initial approximation ag = 1

17: [, 25D f.11] = OneDimMin(z®), fi., u®) 1);

18: if ||z — 20| /(1 + ]2+ D)) < tool arg then break with code=1;

19: if | frr1 — fel /(L4 |fe+1]) < tool fun then break with code = 2;

20: 2®) = 20TV fi = fipns k= k+ 1 g0 = fO (W),

21: if ||g®)|| < tool grad then break with code=0;

22: if k > K then break with code = 3;

23: Hy, = @ (xk);

Output: last 2, fi., ¢ k.

determined as a minimum point of the function of one variable w3(a) = f(z*¥) + au®)), where

k) (k) (k)

ul = Qp1uy 4 Qrauy .

These one-dimensional minimization problems for the functions ¢;(«), ¢ = 1,2, 3, may be solved
numerically, according to the following algorithm. First, suppose some initial value o = ay is chosen.
If vi(a) < ¢i(0), then o doubles until the function ¢;(«) decreases. If p;(a) > ;(0), then « is
halved until the condition p;(c) < ¢;(0) is satisfied. Then the approximate minimum point of the
function ¢;(«)(i = 1,2) is calculated as the minimum point of the quadratic function constructed
from the last three best points (provided that the values at these points are different), and the function
¢3(a) is calculated as the local minimum point of the cubic function constructed from the four last
best points.
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Algorithm 3. One-dimensional minimization

)

Input: (%) is a current point; fj, is the value of f (z) at the point z®); 4(*) is a search direction;

initial value of the step size p > 0.
1: function definition ¢(«) = f(:c(k) + au®);
2: initialization: oy = 0590 = fi;
3 an = pip1 = p(an);
4: if (1 < o then
g = 20152 = p(az);
5 while ¢ < ¢g :
6 Qo = Q1390 = P13
7 a1 = 025 P1 = P2;
8 g = 2a1; 02 = p(a2);
9

. else:
10: while p1 > ¢ :
11: Qg = Q1; P2 = P1;
12: a1 = a1 /2501 = (ar);

13: ag is determined as a minimum point of the quadratic function that fits to the following three

pOintS (QO) 800)7 ((11, @1)7 ((12, @2))
14: @3 = p(az);
15: if (3 < o1 then
16: Q1] = a3;P1 = P3;

Output: a;, g+ = £(k) Oqu(k), fr+1 = o1

To find the approximate minimum of the function ¢ (), the initial value g = 1 is taken. To
minimize (), it is possible to take the initial value ap = max (1, a(j—1)2), where a_1) o is the
value of the step size ayo, obtained at the previous iteration.

Such an algorithm for choosing sizes of the steps ayi; > 0 and oy > 0 can be interpreted as
follows. When the minimum point degenerates, in its neighborhood the objective function becomes
“ravine”, that is, across the “ravine” it is steep, and along the “ravine” it is sloping. Therefore, along
the “ravine” (that is, in the subspace Ker (Hy.)), it is necessary to take the largest possible step,
while across the “ravine” (that is, in the orthogonal complement of Ker (Hy.)), the step is most likely
close to unity.

Now consider the fourth-order combined method defined by (2), (13), and (14) for solving the
degenerate problem (1). In this method, the step sizes aj; and aygeo, involved in (2), can be taken
equal to each other. So, the iterative formula (2) becomes

20D = 20 4o @ 1), k=0,1,2,.... 21

Then the step size oy, > 0 is found as an approximate minimum point of the function of one
variable p3(a) = f(z*) + a(ugk) + ugk))) according to the algorithm described above for finding
the minimum point of the function ¢1(«). The initial value for « is 1.

2.4. Analysis of the convergence rate of methods. To analyze the convergence rate of the
methods, it is convenient to use the generalized necessary and sufficient conditions for a minimum
of a degenerate unconstrained optimization problem proposed in [24]. The following two theorems

were proved in [24]. We recall that (f()(2*))" is a pseudoinverse matrix [5] of f()(z*), P is an
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orthogonal projector onto the subspace R; P is an orthogonal projector onto the subspace Rs, then
P=1—(fOa*)tfO ), P = (f@ )t f@ ().

Theorem 2.1 (generalized necessary conditions for a minimum). Let f(x) have a minimum at
x* € R". Suppose that f(x) is p times (p > 4,p is even) continuously differentiable in some
neighborhood V (x*) of the point x* and, for all uw € R", the following condition holds:

FO @ [(Pu)?) =0, where 1=1,... ,g ~1. 22)
Then, for all u € R", the following is true:
@) =0, [P’ =0, (23)
FE @) [(PHu)?] = mol| PHul?, (24)
FOED ) [(Pu)? 1) = 0, where = 1,... ,g 1, f@E[(Pu)] >0, (25)
FED @) [(PRu), (Pu)] =0, where 1=1,... ,g —1, (26)

(f(”) () - pi!z(f(g“) ()" (f (x*))+(f(5“)(ﬂf*))) [(Pu)’] =0,

where mo > 0.

Theorem 2.2 (generalized sufficient conditions for a minimum). Suppose that f(x) is p times
(p > 4,p is even) continuously differentiable in some neighborhood V (x*) of x*, at which the
conditions (22)—(26) are satisfied. In addition, assume that for all v € R", the following estimate
holds:

p

* p! 5 * * 5 *
[P = —— s (FED @) (O @) (FE @) [[(Pu)] = myl Pull?, @7)
= B
((2))
where my, > 0. Then x* is a point where f(x) has a strict local minimum. Moreover, for all x in
some sufficiently small neighborhood of x*, the following inequality is fulfilled.

f(@) = f(2*) = mo(|[PHo|* + || Pol), (28)

where v = — ¥, mg > 0.
The following lemma is also needed for the further analysis.

Lemma 2.3. Suppose that the function f(x) satisfies the conditions of Theorem 2.2 except the
condition (27). Assume that for all uw € R", the following condition is fulfilled:

(p/2+1)*(p—1)!

()

FP (") ~ (FE @O @) (FED @) | [(Pu)] = my||Pul?,

(29)
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where my, > 0. Then the condition (27) is true, and for all x from some sufficiently small neighborhood
V(x*), in addition to the estimate (28), the following estimate holds:

(fV @) (@ = 2*) = my (| PHo||? + | Pol), (30)

where v =z — ¥, my > 0.

Proof. First, let us show that the inequality (27) follows from the inequality (29). Consider the
multilinear form (£ ()T (f@ (2*))* (£ +D (2*))[(Pu)?], which appears in the conditions (27)
and (29), and prove that its value is nonnegative for all u € R".

Let z = f(5H)(2%)[(Pu)P/2]. Note that z € R"; therefore,

2|2 >0,

FE @ NP @) FED @)[(Pup] = (FO @) %) =

where A\pax is the largest eigenvalue of the matrix f (2) (z*).

2+1)%(p—1)!
(p/2+1)(p 5 ) in the inequality (29) is greater than the coefficient —————
p p
1((5)) 2((3)Y)
2 2
for all p > 4. Thus, if the inequality (29) is satisfied, then (27) is also true.
Since the function f(x) is p times continuously differentiable on the neighborhood V' (x*) of the
point x*, using the Taylor series expansion for all x € V' (z*), it follows that

The coefficient

p
) = V(@ +Z

l:2

f(l @)™+ o(lv]?),

where v = x — x*. Then, for the sufficiently small neighborhood V(x*), taking into account the
conditions (22)—(26) it is deduced that

(fV (@)’ (z - 2*)

= [P (2" +lz: ,Zsz F0)' 7 (Po)!] + O(|[v][P+)
— f(2)<$*)[(PJ‘U)2] + p/2 + 1f(g+l)(x*)[(PJ_,U)’ (Pv>p/2] + (p _1 1)'f(P)( )[(P’U) ]

O(IIP*o]*) + O(IIP*o[[[|Pu]|2 ) + O (I Pl *|Poll?) + O(lo]”*).

)

(FE @) (O @) (G @) | [(Po)]

Thus,

VS|

(fV@) (@ —2*) = [D(a*)

(Plv L p2rl (SO @)t (fED @) [(Po)

2(3)!
(p/2+1)*(p—1)!

RS (T
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+O(IP*0|*) + O(IPFol[[|PolZ*) + O(I Pl Pol|Z) + O([lv]P*).

From (24) and (29) it is straightforward that

(fV@)" (z - 2*)

2
p/2+1 . ) 7
> mo|| o+ B (@ ) (pED @) (o)l | + 2 pup
2<7)! (p—1)!
2
— N1[|Po||® = No|| PLol[]| Po|| 5+ — N3|| PLo|?| Pol|? — Nyfo|P*H, (31)

where N1, N2, N3, and N4 are some positive constants.

. 2+1
Let us consider # € V(z*) such that |Pto| > p/2+

*(3)

1@ @) || 5D ()

then
p
2

p

1
(F@ (@) T (FE (@) [(Pv)?]

%)

> || Ptol| —

Pto+

p
- +1
2+

%)

Therefore, for a sufficiently small subset of V' (z*), the following estimation holds:

(@) =) 2 5 (RNPHI+ o)

> min ("2, 2(’7”‘))<||P%\2+\Pvup> (2)
p

+
Now choose = € V(2*) such that | PLol| < ( ) 1P (@ ”H FED@|1(Po)]|1 then
2

-1
| PLv||. Moreover, from (24) it is clear that

2
|Polf > 2p(i>1‘||(f(2)(x*))+||‘1Hf(g“)(x*)

2
p
2) (% 1 . : 2 2( ) 2)(p 1 +1 o1
IO @I < - which gives [[Pof > 522170 @) 2 fED @ | bl 2
5

() -

Hf 27D (z*)|| ||PLv||. Then, from (31), for a sufficiently small subset of V' (z*), the

—i— 1

2
following is obtained:

T 1 my
f(l)x r—z") > = Pu||P
(@)@ =) = 5 Pol
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P 2
7 a (2(5)! _
1 2
LR Tre vl &) I LA ol I

(p—1)! 4(p—1)! 1

F-

D 2
. _ 2(£)1
m 1 m ( ) P -2
> min L 2 27 Hf(TH) x* PLo||2 4 ||Pv||P).
Sl Era e @) | APl + 1)

(33)
Note that this implies the condition Hf(gﬂ)(m*) > 0. In the case of Hf(gﬂ)(az*) = 0, that is,
FED (%) = 0, from (31), for a sufficiently small subset of V (*), the following is obtained:
1 _
(UO@) @ =) 2 G mall Lol + =2 Po)
. my mp 1 2 D
> min (27 2(])—1)')(HP of* + [|[Po|[P). (34)

Thus, according to (32)—(34), for all = in a sufficiently small deleted neighborhood of z*, there is a
positive constant m; such that the inequality (30) is satisfied.
Corollary 2.1. Suppose that the function f(x) is p times (p > 4,p is even) continuously

differentiable in the neighborhood V (x*) of the point x*, at which conditions (22)—(26) are satisfied.
Let {2 (z*) be equal to the zero matrix, and for all u € R™, the following holds:

FO ) (Pu) = my||Pull?, (35)

where my, > 0. Then x* is a point of strict local minimum of f(x) and, for all x in a sufficiently
small neighborhood V (x*), the following inequality is fulfilled:

F(x) — f(z)* > mo| Po|?,
FO @) (@ —2*) > my | Pol?, (36)
( )

where v =x — ¥, mg > 0,mq > 0.

The proof follows from Theorem 2.2 and Lemma 2.3, since in this case the projector P+ = 0,
and the projector P = I, (f®(z*))* = 0.

Now let us analyze the convergence rate of the fourth-order combined method given by (21), (13)
and (14) wherein it is considered a; = 1. For ease of analysis, let us consider the following approach.

The combined fourth-order method described by (21), (13) and (14) is a combination of Newton’s
method and the method that requires the fourth-order derivatives. At each kth iteration, the entire space
R™ is represented as the direct sum of two subspaces Ker (Hy,.) and the orthogonal complement of it.
The fourth-order method is applied to Ker (Hy.) and Newton’s method is applied to the orthogonal
complement of it. The convergence rate of the combined method is determined by the performance of
the slowest method of the original two methods. It is well known that Newton’s method in the case of
nondegenerate matrix f (2)(90*) has a quadratic convergence rate. Moreover, the sufficient condition
for a minimum is in the form of inequality (24) (where P+ = I).
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It is useful to discuss the fourth-order method given by (21), (13) and (14) in the case of the matrix
1@ (z*) that is equal to the zero matrix. This simplifies significantly the study of the convergence
rate. In this case, the matrix Hy,. is equal to the zero matrix near the minimum point z*, that is, the
projector P,j = 0, the projector P, = I, and the vector u; = 0. Therefore, (21), (13) and (14) are
simplified.

Approximate the function f(z), for every z in a neighborhood of the point z(¥), by the following
function

fra(@) = fi(ug) = f(zW) + (Peg®™, ug) + %Ek[(UQ)Q]

+ IO ()] + 57D ) a), G7)

which is obtained using the fourth-order Taylor expansion, where z — z(%) = ws,.
The vector ugk) is defined as the minimum point of the function fg4(u2). So, it satisfies the

following system of equations

0 fra(u2)

1 1
= Pog® + Epus + 5k FO @) [(u2)?] + P FD (@) [(u2)?] = 0. (38)

However, the function fy4(x) given by (37) is a fourth-order function and its Hessian also must be

equal to zero at the minimum point. Then the necessary condition for its minimum point is that the
(k)

third derivative is equal to zero. Thus, near the minimum point, the vector u, ~ can be determined
from the system

&3 fra(u2)

E Py f®) (k) [(u2)?] + P () [(u2)®] = 0. (39)
2

Theorem 2.3. Suppose that f(x) has a local minimum at the point x* € R"™. Let f(x) be 4
times continuously differentiable in the neighborhood V (x*) of x*. Let the matrix f®)(x*) be equal
to the zero matrix and, for all v € R", condition (35) is satisfied for p = 4. Then the fourth-order
method given by (21) and (38) converges in a neighborhood of x* and the rate of convergence is 4/3.

Proof. Recall that the vector ugk) is found as the minimum point of the function fra(z) given
by (37) and, taking a; = 1 in (21), it is clear that z(*t1) — z() = u(k) and f ( (k+1)y = 0.
Therefore,

(f(l)($(k+l)))T(x(k+l) — ) = (f(l)( (k+1) ) f(l)( (k+1) )) (k:-i—l)’
where v*+1) = g (k+1) _ 2% Thys,
(f(1)(x(k+1))) (z (k+1) _ ) < Hf k+1)) flgi)(l'(kﬂ))HHU(HI)H-

However by using (38), we get

FOEEDY = D @® ) = o(|[ud” ]| ).

Then there is a constant M > 0 such that

o~ e < o

9

ISSN 1027-3190. Ykp. mam. oscypn., 2024, m. 76, Ne 5



710 VIKTOR ZADACHYN, MAXIM BEBIYA
and, therefore,
(PO @) (@) 07 < ] 0.
Using the inequality (36) yields

my||[Po*HD |4 < (f(l)(x(kJrl)))T(x(kJrl) —2*) < M"uék)”4"v(k+l)}|
or

|| Py(k+1)|[4 _ H (’”1)“3

4
[ D] H

M
< ug? (40)
my
The vector uék) is determined from the system of equations (39) multiplying both sides of this system
by the vector uo. This results in the following equation for ws:

FO @) [(u2)"] = — O (@0) [(us)?].

Then, from condition (35) with p = 4 and the continuity of the 4th derivative of the function f(x)
on a sufficiently small neighborhood of the minimum point, it follows that

my

5 luall* = %HPUzH4 < FO @) [(u2)!] < 1P @) [(u2)]| < [| £ @)z

From which the following estimate is derived

s < 2/mal| 7 )] (41)

Finally, expanding in the Taylor series, and using the condition (25) with p = 4 (which is a
necessary condition for a minimum [24], from the continuity of the 4th derivative of f(x) in a
neighborhood of the minimum point it is deduced that there exists a constant M4 > 0 such that

OGO = 9@ + D@ w® + oo )] < aflu®). @)
Then (40)—(42) give

16.M (My)*

T

3 _ M oM
o0 < o) < - mall 7O ) < SEE

from which follows

1/3
o ED| < 160 (M) \ Y [o® 3
— \mqy(myg)? ’

The theorem is proved.

Now it is possible to analyze the convergence rate of the combined second-order methods given
by (2), (8) and (9). For ease of analysis, consider the approach used above.

The combined second-order method described by (2), (8) and (9) is a combination of the Newton’s
method and the gradient method. At each kth iteration, the entire space R™ is represented as the
direct sum of two subspaces Ker (Hj.) and the orthogonal complement of it. The gradient method is
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applied to the subspace Ker (Hy.), and Newton’s method is applied to the orthogonal complement
of it. The convergence rate of the combined method is determined by the convergence rate of the
slowest of the original two methods. Now let us analyze the method defined by (2), (8) and (9) in
the case of the matrix f(?)(z*) that is equal to the zero matrix. In this case, the method becomes
the gradient method, wherein it is considered aio = p > 0 (the gradient method with a fixed step).
Therefore, the method given by (2), (8) and (9) takes the form

2D = 20 4 P g =0,1,2,.. ., (43)

where uék) = —lg(k), kD) — (k) — puék).

Theorem 2.45. Suppose that function f(x) has a minimum at the point ©* € R". Let f(x) be
4 times continuously differentiable in the neighborhood V (x*) of x*, the matrix f® (z*) is equal
to the zero matrix, and, for all uw € R", the condition (35) is satisfied. Then the gradient method
with a fixed step given by (43) converges in a neighborhood of ©* and the rate of convergence is
sublinear [2].

Proof. Formula (43) gives v(*T1) = y(k) — gg(k), where 0¥t = 2(k+1) _ 2* Then

2
o2 = u® — 2g®)2 = u®2 - 28 (g8)Tu® 1 (£)7)g0)2, (44)

Using the inequality (36) with p = 4 yields
(g™ 0™ = my 0@ (45)

By the Taylor expansion, using the continuity of the 4th derivative of f(z) in a neighborhood of the
minimum point, it is derived that there exists a constant M, > 0 such that

1F H—Hf N+ O )U(k)—i—%f(?’)(x*)( 2+ f /(@) ()3 + O (|]o® ")

< My @ (46)

Therefore, from (44)—(46) it is straightforward that

P P\?
D12 < o2 = 22 0@ + (2)" (a2 o ®)°

< (1= 2Ll + (2) Qa1 ) o P
Then, for a sufficiently small neighborhood of the minimum point, the following estimate is obtained:
D12 < (1= Lo o ®2) 0
or
o) < (1= Lony o) o0,
Thus, the convergence rate of the method defined by (43) is sublinear
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3. A Quasi-Newton version of the methods. In practice, calculation of the Hessian matrix at each
iteration can be overly time consuming. Consequently, it seems logic al to consider the quasi-Newton
versions of both the combined second-order method given by (2), (8), (9) and the combined fourth-
order method given by (21), (13), (14). To this end, the matrix Hy, used in (3), is updated according
to the Broyden — Fletcher — Goldfarb — Shanno formula (BFGS) [2]. Numerical experiments show
that as =(¥) approaches a degenerate minimum point, which, in the case of these combined methods,
means that the parameter value r; < n, it is preferable to periodically recalculate the matrix Hj, as
H, = f@ (z*). Otherwise, the number of iterations essentially increases. Apparently, this happens
because the representation of the entire space as the direct sum of two subspaces is inaccurate due to
the large error in computing of the Hessian matrix approximation.

4. Adaptive combined quasi-Newton-type method (ACQNM). Let us consider the adaptive
combined method (ACQNM), which makes use of the above methods and is a quasi-Newton method.
When the rank of the Hessian degeneracy is equal to one, ACQNM coincides with the fourth-order
method defined by (21), (13) and (14). If the rank of the Hessian degeneracy is more than one, then
ACQNM coincides with the second-order method defined by (2), (8) and (9). In ACQNM, the matrix
Hj, used in (3), is recalculated according to the BFGS formula [3] at each iteration. The step sizes in
the formula (2) are determined by the algorithms described above.

The efficiency of ACQNM is supported by the numerical experiments that were carried out on
generally accepted test functions for unconstrained optimization problems [1]. ACQNM was tested
using R, Scilab, and Python. The results of the numerical experiments are presented below.

Algorithm 4. Adaptive combined quasi-Newton-type method (ACQNM)

Input: Initial point z(?); regularization parameter & > 0; algorithm one-dimensional minimization
OneDimMin (which is given in Subsection 2.3); algorithm of spectral decomposition of a matrix eigen
(which is a standard function in R); step of numerical differentiation h; maximum number of iterations
K; accuracy by the gradient tool grad > 0; accuracy by the argument tool arg > 0 accuracy by
the function tool fun > 0.

I: initialization: k = 0; fo = f(z(9); ¢© = fW (2. Hy =T;
2: while ||g*)|| > tool grad :

(Ak, Qi) = eigen (Hy, symmetric = TRUE), Ay = diag ()\gk), e (k)) )\(k) > )‘Ei)lv

w

initialization: r; = 0;
for:=0,...,n:
it A9|> ¢ then ry, =ry +1;
if /\( ) < _¢ then )\Ek) = —/\gk);
if r. = n then
uk) = —QkAng;‘gg(k), u;k) = 0.
10: ay, is determined as a minimum point of the function of one variable 1 () = f(z® +au(®)
with the initial approximation og = 1
11: lag, 5D fri1] = OneDimMin(z®), £, u®) | 1);
12: else

A 0
13: Qr=[Qr  Qrz,\p = [ Sl AkJ
14: if 7, <n — 1 then
k _
Is: ) = — QAL Qg™

D A A U
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k _
16: ug — 1Qk2Q£Qg(k)
17: ay is determined as a minimum point of the function of one variable ¢ (o) = f(z®) +

augk)) with the initial approximation oy = 1

[aklai'(k+l):fk+l] =OneDimMin(x(k), fkvugk , 1), where G = (k)‘i‘aklugk)?fk—i-l =

F@EHH);

18: ay is determined as a minimum point of the function of one variable o () = f(z*) +
aklugk) + auék)) with the initial approximation ap = max (1, a(,_1)2);

19: [ogg, 5D f ] = OneDimMin(fc(k‘“),ka,uék),max(l,a(k_lm));

20: else

21: calculate y(¥) ~ O+ hq ) Ll is (2 =)+ e hq,g ));

22: 1 is determined as a solution of the equation (16);

23: ( ) = ,usq,(g ), where s = sign ((g(k))Tq,in));

24; § — —QuAL QL (g®) 4 £y k),

25 uk) — (k) +u (k)

26: ay 1s determmed as a minimum point of the function of one variable @3(a) = f(z(¥) +

au®)) with the initial approximation ag = 1;
[, 25D i 1] = OneDimMin(z®), fi. u(®) | 1);
27: if [|zFHD — 2®)|| /(1 + [|#**+D||) < tool arg then break with code=1;
28: if |fr+1 — frl/(1 + | fr+1|) < tool fun then break with code = 2;
20: o) = oD = frgs k =k 4 15 g® = fO(20);
30: if ||g*)|| < tool grad then break with code=0;
31: if £ > K then break with code = 3;
32: Hj, is updated according to the BFGS formula;

Output: last (¥, f, g¥) k

5. Results of the numerical experiments. ACQNM for solving the degenerate problem (1) was
implemented in R. To guarantee the stability of the method, the negative diagonal elements )\f of
the matrix Ay given by (3) were replaced by —)\f. The matrix H}, used in (3), is updated according
to the BFGS formula with the initial approximation Hy = I. The regularization parameter of the
numerical method ¢ was taken equal to 10~7 x maxizlj,,_,nﬂ)\f |). Note that the matrix Hy, is thought
to be close to degenerate if its condition number cond(Hy) is greater than 107. The derivatives

k = f'(z*) were calculated numerically by the symmetric formula

of (@) _ fla|zi + hi) — flz]zi — hi)

8.% - th (47)

with a step of numerical differentiation h; = hg max(1,|z;|), where hg = 1076,
ACQNM was tested on the following test functions for unconstrained optimization problems [1].
1. Extended Rosenbrock function: f(z) = Z?ﬁ [100(22; — 23;_1)? + (1 — 29;_1)?], where
the initial estimate is z° = (—1.2,1,...,—1.2, 1)T,7the minimum point is 2* = (1,1,...,1)T,
the value of the objective function at the minimum point is f(z*) = 0, rank (f”(z*) = n, and
cond (f”"(x*)) = 2508.01.
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2
2. Extended White & Holst function: f(x) = ij/l [100(9321- - x%i_l)Q + (1 — 29;1)?], the

initial estimate is 20 = (—1.2,1,...,—1.2,1)7, the minimum point is 2* = (1,1,...,1)7, the value
of the objective function at the minimum point is f(z*) = 0), rank(f”(z*)) = n, cond(f”(z*)) =
10018.01.

4
3. Extended Wood function: f(z) = Zé/l[loo(xii_?, — 245 9)° + (2453 — 1) +90(z?,_; —
1=
LU4Z‘)2 + (1 — .1‘42‘,1)2 + 10.1((.%’41;2 — 1)2 + (x4i — 1)2) + 19.8(.1‘41 9 — 1)(%41 — 1)], where the
initial estimate is 2° = (-3,—1,-3,—-1,...,-3,—1,-3,—1)7, the minimum point is z* =
(1,1,1,1,...,1,1,1,1)T, the value of the objective function at the minimum point is f(z*) =
rank (f(z*)) = n, cond (f"(z*)) = 1397.957.
4
4. Extended Powell function: f(x) = Zé/l[(am,g + 10245—2)% + 5(2ai—1 — 245)* + (Tai—2 —
i=
2m4i_1)4 + 10(z4i—3 — m4i)4], where the initial estimate is 2° = (3,~1,0,1,...,3,—1,0,1)T, the

=

minimum point is z* = (0,0,0,...,0,0,0)7, the value of the objective function at the minimum
point is f(a*) = 0, rank (f"(a")) = 2.

2
5. Extended Freudenstein & Roth function: f(x) = ZWI(—lB + z2i-1 + ((5 — mo;)we; —
1=
2)29;)? + (=29 + w21 + ((22; + 1)m2; — 14)72;)?, the initial estimate of the minimum is 20 =
(0.5,—2,...,0.5,—2)7, the minimum point of the objective function is z* = (11.4127790,
—0.8968053, ...,11.4127790, —0.8968053)T, the value of the objective function at the minimum
97.96851 if n =4
oint is f(z*) = " rank (f"(z*)) = n, cond (f"(x*)) = 1102.78.
pointis £(a) = 3, Tk () (")
2
6. Extended Tridiagonal 1 function: f(x) = Zé/l[(wziq + x9; — 3)2 + (x9i—1 — 9 + 1)4],
1=
the initial estimate is 2° = (2,2,...,2)7, the minimum point is 2* = (1,2,...,1,2)7, the value of
the objective function at the minimum point is f(z*) = 0, rank (f”(2*)) = 5

~1
7. FLETCHCR function (CUTE): f(x) = Zn ) 100(xi41 — 2; 4+ 1 —22)?, the initial estimate
1=

is z° = (0,0,...,0), and the minimum point is not strict (therefore, it is not unique). The value of
the objective function at the minimum point is f(z*) = 0, rankf”(z*) =n — 1.

8. My functionl: f(z) = 1000(z; — 1000)2 + 0.001z3 + Z’f‘ (i — i)?, the initial estimate

1=

is 20 = (100, ...,100), the minimum point is z* = (1000, 0, 3,4, ...,n), the value of the objective
function at the mmimum point is f(z*) = 0, rank (f”( ) =n-—1.

9. My function2: f(z) = :1:%—%:613;%—1—3:‘214-2? 2, the initial estimate is z° = (10, 14, 10, .

1=

10), the minimum point is * = (0,0,...,0,0), the value of the objective function at the minimum
point is f(z*) = 0, rank (f"(z*)) =n — 1.

101 .
10. Mean-square approximation by polynomials: f(z) = Z ) [Zn i 0.01(j —1)"! -
i= i=

Zj_l x; - 0.01(j — l)ifl} 2, where n = 5. The initial estimate is 2" = (2,2,2,2,2), the minimum
pointis z* = (1,1,1, 1, 1), and the value of the objective function at the minimum pointis f(xz*) = 0,
rank f”(z*) =n — 1.

Note that the functions 4, 6 — 10 are characterized by the Hessian matrices f”(x*) that are poorly
conditioned. The functions 7—10 have the Hessian matrices with a degeneracy rank that is equal to
1. The numerical experiments for the functions 1 -9 were carried out for n = 4 and n = 100.
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It is interesting to compare ACQNM with the following standard computational tools: the optim
function (method L-BFGS-B) of the mathematical package in R 4.3.2, the minimize (method BFGS)
function of the mathematical package in Python (scipy.optimize version: 1.11.3), and the optim
function (method ’Quasi-Newton with BFGS’ of the numerical computational package Scilab 6.1.1.
The calculations were performed with maximum precision. The results of the numerical experiments
are presented in Tables 1 -4, where the following variables are defined:

Funct indicates which function is under test;

n is a value of the parameter n;

n-r is the rank of Hessian degeneracy at the minimum point;

Dx = ||z — z*|| is the Euclidean norm of the difference  — z*, where 7 is the approximation of
the solution obtained by the optimization procedure;

Df = |£(&) - f(a")];

Nitr is the number of iterations performed,

Nf is the number of calculations of the objective function performed;

Ngr is the number of calculations of the gradient of the objective function performed;

NormGr = |£/(#);

code, message, or exitflag are exit codes returned by the optimization procedure;

For ACQNM, the parameter Nf does not account for the number of the evaluations of the objective
function needed for numerical computation of the objective function gradient by the formula (47).

For ACQNM, the exit code takes the following values:

0 — required accuracy by the gradient is reached (10720 was given);
1 — required accuracy by the argument is reached (1079 was given);
2 — required accuracy by the function is reached (1072° was given).
For the optim function (package R), the exit code message takes the following values:
1 - ERROR: ABNORMAL TERMINATION IN LNSRCH;
2 — CONVERGENCE: REL_REDUCTION_OF F < FACTR*EPSMCH;
3 -NEW_X.
For the minimize function (package Python), the exit code takes the following values:
1 — Desired error not necessarily achieved due to precision loss;
2 — Optimization terminated successfully.
For the optim function (package Scilab), the exit code err takes the following values:
1 — Norm of projected gradient is lower than .. .;
4 — Optim stops: maximum number of calls to f is reached;
5 — Optim stops: maximum number of iterations is reached;
9 — End of optimization, successful completion.

Tables 1 and 3 show the calculation results for the optim function of the mathematical package in
R and the minimize function of the mathematical package in Python for n = 4 and n = 100. Tables 2
and 4 show the calculation results for the optim function (Quasi-Newton with BFGS’ method) of the
mathematical package Scilab and the ACQNM function for n = 4 and n = 100.

As Tables 1-4 show, the optim (L-BFGS-B) function in R and the minimize (BFGS) function
of the Python scipy.optimize package both perform worse than the optim function of the Scilab math
package in terms of accuracy and number of calculations of the objective function. At the same time,
the optim procedure of the Scilab math package shows worse results than ACQNM in terms of
accuracy and number of calculations of the objective function.

ISSN 1027-3190. Ykp. mam. oscypn., 2024, m. 76, Ne 5



716 VIKTOR ZADACHYN, MAXIM BEBIYA

Table 1. Calculation results for the optim function in R and the minimize function in Python for

n=4

‘g R optim (L-BFGS-B) Python minimize (BFGS)

Z | n|nr Dx Df Nitr | Nf | Ngr | NormGr | Code Dx Df Nitr | Nf | Ngr | NormGr | Code
1 |4] 0 |6.3e-04 | 8.0e-08 91 | 91 5.6e-04 1 1.4e-05 | 4.0e-11 | 58 | 542 | 106 | 4.1e-07 1
2 14| 0 |3.8e-03 | 1.5¢-06 109 | 109 | 7.9¢-04 1 4.0e-05 | 1.6e-10 | 79 | 697 | 137 | 2.8e-07 1
3 14| 0 |8.0e06 | 4.4e-10 154 | 154 | 3.9e-04 2 4.3e-07 | 5.7e-13 | 89 | 652 | 128 | 3.2e-10 1
4 [ 4] 2 |5.1e-05| 6.7e-18 135 | 135 | 1.2e-10 1 1.2e-03 | 52e-11 | 48 | 457 | 89 | 8.9e-07 1
5 14| 0 | 1.8-05 | 1.7e-10 91 91 2.6e-04 2 3.9¢-07 | 2.8¢e-14 | 21 190 | 38 | 9.7e-06 1
6 | 4] 2 | 1.0e-05| 3.9¢-19 51 51 1.7¢-09 2 4.8¢-07 | 1.1e-16 | 54 | 670 | 132 | 1.2e-15 1
7141 2.0e-10 51 | 51 5.2e-04 1 39e-13 | 12 | 292 | 56 1.8e-05 1
8 | 4] 1 |4.6e-05]| 1.2e-20 84 | 84 | 3.4e-09 2 1.2e-06 | 5.5¢-14 | 69 | 390 | 78 | 6.8e-216 2
9 4] 1 |21e05 | 1.5E-19 130 | 130 | 2.2e-12 2 7.0e-05 | 1.8e-16 | 50 | 442 | 86 1.2e-11 1
10 5] 1 |22e12] 2.0e-25 88 | 88 | 2.9e-12 2 3.0e-07 | 9.1e-15 | 13 | 2270 | 43 2.4e-11 1

Table 2. Calculation results for the optim function of the mathematical package Scilab and the
ACQNM function for n = 4

‘g Scilab optim (quasi-Newton with BFGS) ACQNM

Z | n|nr Dx Df Nitr | Nf | Ngr | NormGr | Err Dx Df Nitr | Nf | Ngr | NormGr | Code
1 4] 0 |23e08 | I.le-16 | 50 | &9 4.0e-14 9 |2.1le13 | 9.9e-27 | 22 | 115 | 23 l.le-12 1
2 14| 0 |1.0e-07 | 2.1e-15| 49 | 172 4.8e-14 9 | 6.0e-13 | 6.4e-26 | 33 | 157 | 34 l.1e-11 1
3 14| 0 |7.0e10 | 1.6e-18 | 81 | 180 3.9e-14 9 |53e-15|4.1e-29 | 51 |212| 52 | 2.4e-13 1
4 (4| 2 | 12e10]|3.2e-40 | 93 | 175 2.1e-29 1 1.2e-06 | 2.7e-24 | 39 | 262 | 48 5.0e-16 1
514 0 |42e10| 7.1e-14 | 27 | 158 3.1e-10 9 | 3.2e-08|57e-14| 9 52 | 10 | 4.7¢-07 2
6 | 4| 2 |4.0e07 | 3.1e26 | 62 | 377 3.0e-16 9 |28e-06| 1.2e-22 | 19 | 84 | 26 | 4.7e-12 1
7141 7.1e-20 | 25 | 206 3.6e-09 9 5.5e-30 | 10 | 51 11 1.5e-13 1
8 | 4] 1 |9.1e08 |43e32| 90 | 179 4.4e-16 9 |9.1e-07 | 1.4e-26 | 21 | 125 | 48 | 2.4e-13 2
9 (4] 1 | lle21| 1.3e-84]| 213 | 229 3.2e-43 1 | 21e-07 | 7.7e-27 | 37 | 160 | 58 1.6e-13 2
105 1 | 1513 | 2.5e-28 | 14 | 42 9.0e-15 9 | 7.3e-11 | 2.5e-24 | 7 55 8 1.7e-11 1

Table 3. Calculation results for the optim function in R and the minimize function in Python for

n = 100

‘g R optim (L-BFGS-B) Python minimize (BFGS)

2 n |nr Dx Df Nitr | Nf | Ngr | NormGr | Code Dx Df Nitr | Nf | Ngr | NormGr | Code
11100| 0 0.002 | 8.4e-07 114 | 114 0.003 1 7.4e-05 | 1.1e-09 | 473 | 56066 | 555 | 1.1e-05 1
21100| 0 0.02 | 3.6e-05 122 | 122 0.01 1 2.1e-04 | 4.8¢-09 | 712 | 87882 | 870 | 9.3e-05 1
31100 | 0 | 7.2e-04 ]| 2.1e-07 257 | 257 0.002 1 2.6e-06 | 1.5e-11 | 789 | 89294 | 884 | 2.2e-06 1
4 1100 | 50 | 3.5¢-04 | 5.4e-16 705 | 705 1.3e-08 2 2.1e-02 | 38e-08 | 335 | 40816 | 404 | 1.5e-05 1
51100 | 0 | 9.2e-05 | 4.3e-09 43 43 1.2e-03 2 7.3e-03 | 2.2e-09 | 181 | 27068 | 268 | 2.3e-04 1
6 | 100 | 50 | 2.2e-10 | 8.4e-29 47 47 2.7e-14 2 5.3e-05 | 2.8e-15 | 82 | 12634 | 125 | 2.9e-13 1
71100 | 1 4.3¢-08 1400 | 1400 | 2.8e-03 1 89.09 | 419 | 48592 | 481 | 1.4e-05 1
8100 | 1 |2.7e-09 | 7.3e-27 101 101 1.7e-13 2 1.7e-04 | 6.1e-14 | 53 | 12029 | 119 | 2.6e-10 1
91100 | 1 |3.3e-10 | 9.2e-27 66 66 1.9¢-13 2 7.0e-05 | 5.5e-15 | 52 | 8395 | 83 | 2.3e-13 1

Tables 2 and 4 show the results of the calculations for the optim function of the Scilab
mathematical package and ACQNM for n = 4 and n = 100. These results confirmed that ACQNM
allows one to obtain more accurate solution to the problem. In this case, ACQNM uses approximately
1.5-2 times fewer calculations of the objective function for n = 4 (Table 2) as well as for n = 100
(Table 4). But the main point is that for problems 7-9 (for n = 4 and n = 100) as well as problem
10 (for n = 5), which have one-dimensional kernel of the Hessian matrix, ACQNM performs
significantly fewer iterations, confirming its faster convergence rate.
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Table 4. Calculation results for the optim function of the mathematical package Scilab and the
ACQNM function for n = 100

‘g Scilab optim (quasi-Newton with BFGS) ACQNM

£ n |nr Dx Df Nitr | Nf | Ngr | NormGr | Code Dx Df Nitr | Nf | Ngr | NormGr | Code
11100 | 0 | 1.0e-07 | 2.7e-15 | 231 | 834 3.8e-12 9 4.1e-09 | 7.2e-18 | 72 492 | 73 8.8e-08 1
21100 | 0 | 7.0e-07 | 54e-14 | 85 | 368 9.4e-13 9 1.2¢-08 | 1.5e-17 | 228 | 992 | 229 | 2.9¢-08 1
31100| 0 | 3.5e-09 | 4.0e-17 | 93 | 177 1.6e-12 9 1.1e-08 | 4.5e-17 | 454 | 1630 | 455 | 1.2¢-08 1
4| 100 | 50 | 3.4e-07 | 1.3e-23 | 501 | 679 2.2e-17 5 5.1e-05 | 7.0e-19 | 255 | 2153 | 300 | 3.le-13 1
51100 | O | 1.5e-08 | 5.7e-13 | 28 | 200 1.0e-07 9 2.4e-06 | l.le-11 | 16 106 17 1.2e-04 1
6 | 100 | 50 | 1.9¢-06 | 1.2e-24 | 52 | 210 2.5e-13 9 8.5¢-06 | 4.4e-22 | 29 114 | 46 7.4e-12 1
71100 | 1 101.3 | 499 | 938 2.0e-07 9 50.8 199 | 675 | 200 | 6.4e-06 2
8 1100 | 1 |3.9e-07 | 1.5e-26 | 159 | 420 2.5e-13 9 3.3e-06 | 2.7¢-25 | 30 | 148 | 67 | 7.9e-13 1
91100 | 1 | 1.5e-21 | 6.9e-84 | 257 | 302 3.6e-42 1 2.2e-07 | 2.2e-27 | 43 174 | 70 43e-14 2

6. Conclusion. The second-order and the fourth-order numerical methods for solving degenerate
unconstrained optimization problems are considered in the paper using a new approach. Namely, the
entire space is represented as a sum of two orthogonal subspaces. This representation is based on
the spectral decomposition of the Hessian matrix. This approach is particularly interesting because it
allows using different methods on different subspaces. Moreover, any method can be applied to the
kernel of the Hessian matrix.

The convergence rate of each of these methods is analyzed using generalized necessary and
sufficient conditions for a minimum presented in [24]. However, for the sake of simplicity, the
approach that gives an estimation for the convergence rate in the worst possible case is used, and
thus, in practice, the convergence may be faster.

The proposed new adaptive combined quasi-Newton-type method (ACQNM), in fact, combines
three methods and makes use of each method if the situation requires it. This method, in many cases,
makes solving practical degenerate optimization problems more effective.

In view of the fact that the calculation of the spectral decomposition (3) of the matrix Hj, at
each iteration of ACQNM can be very costly, one may use the decomposition described in [26]. The
decomposition from [26] of the symmetric matrices is less numerically stable then the decomposition
(3). Note that the decomposition from [26] may be used at the iterations of the method while the
matrix Hj, is not close to a singular matrix.
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