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COMBINED METHODS FOR SOLVING DEGENERATE
UNCONSTRAINED OPTIMIZATION PROBLEMS

КОМБIНОВАНI МЕТОДИ РОЗВ’ЯЗУВАННЯ ВИРОДЖЕНИХ ЗАДАЧ
БЕЗУМОВНОЇ ОПТИМIЗАЦIЇ

We present constructive second- and fourth-order methods for solving degenerate unconstrained optimization problems.
The fourth-order method applied in the present work is a combination of the Newton method and the method that uses
fourth-order derivatives. Our approach is based on the decomposition of \BbbR n into the direct sum of the kernel of a Hessian
matrix and its orthogonal complement. The fourth-order method is applied to the kernel of the Hessian matrix, whereas the
Newton method is applied to its orthogonal complement. This method proves to be efficient in the case of a one-dimensional
kernel of the Hessian matrix. In order to get the second-order method, Newton’s method is combined with the steepest-
descent method. We study the efficiency of these methods and analyze their convergence rates. We also propose a new
adaptive combined quasi-Newton-type method (ACQNM) based on the use of the second- and fourth-order methods in the
degenerate case. The efficiency of ACQNM is demonstrated by analyzing an example of some most common test functions.

Представлено конструктивнi методи другого та четвертого порядку для розв’язування вироджених безумовних за-
дач оптимiзацiї. Метод четвертого порядку, який ми використовуємо, є комбiнацiєю методу Ньютона та методу,
що використовує похiднi четвертого порядку. Наш пiдхiд базується на предстасвленнi \BbbR n як прямої суми ядра
матрицi Гесса та її ортогонального доповнення. До ядра матрицi Гесса застосовано метод четвертого порядку, а
до ортогонального доповнення — метод Ньютона. Цей метод виявляється ефективним у випадку одновимiрного
ядра матрицi Гесса. Для отримання методу другого порядку, метод Ньютона комбiнується з методом найкрутiшого
спуску. Дослiджено продуктивнiсть цих методiв та проаналiзовано швидкiсть їх збiжностi. Ми також пропонуємо
новий адаптивний комбiнований квазiньютонiвський метод (ACQNM), що використовує методи другого та четвер-
того порядку для виродженого випадку. Ефективнiсть ACQNM показано на прикладi деяких найбiльш поширених
тестових функцiй.

1. Introduction. Unconstrained optimization has been extensively studied due to its particular
importance. Being applied in many nonlinear, constrained, multivariable optimization problems and
software design, unconstrained optimization is important from both theoretical and practical points
of view [6, 14, 15, 18, 19].

Practical problems often deal with the optimality criterion in the case of a degenerate extremum
point, which significantly complicates finding the solution. Most known numerical methods of
unconstrained optimization, even when using the second-order derivatives, have slow convergence in
the case of degenerate problems [2]. In order to improve the performance of a numerical method, it
is often helpful to use the higher-order derivatives [2, 22]. However, using the third- and fourth-order
derivatives makes the numerical method rather complicated.

Fairly effective Newton’s and quasi-Newton methods of unconstrained optimization were described
in [3] and still draw significant attention [4, 7, 8, 11 – 13, 16, 17, 20, 23, 27 – 30]. The significant
attention given to Newton’s and quasi-Newton methods stems from their efficiency, global convergence
properties, and their applicability to a wide range of optimization problems. Quasi-Newton methods
are used to overcome computational challenges associated with calculating the exact Hessian matrix.

1 Corresponding author, e-mail: zadachinvm@gmail.com.

© VIKTOR ZADACHYN, MAXIM BEBIYA, 2024

ISSN 1027-3190. Укр. мат. журн., 2024, т. 76, № 5 695



696 VIKTOR ZADACHYN, MAXIM BEBIYA

For solving degenerate unconstrained optimization problems there was often used an approach based
on regularization of numerical methods [11, 20, 27 – 30].

The main goal of this paper is to present constructive second- and fourth-order numerical
methods for solving degenerate unconstrained optimization problems. Our approach is based on
the decomposition of the entire space as the direct sum of the kernel and the column space of the
Hessian matrix, the idea of which was given in [25]. In contrast to [25], a numerically stable spectral
decomposition of the Hessian matrix is used instead of the Cholesky factorization [26]. This is crucial,
especially in the neighborhood of a degenerate minimum point, as even small computational errors
can significantly disrupt the iterative process. The approach of decomposing the entire space into a
sum of orthogonal subspaces is also interesting because it allows for the use of different methods on
different subspaces. A Newton-like method is applied on one subspace, while another method is used
on the other subspace. To analyze the convergence rate of these methods, the generalized necessary
and sufficient conditions for a minimum of a degenerate unconstrained optimization problem proposed
in [24] are used. These conditions are slightly different from the higher-order optimality conditions
given in [9, 10], which makes them more convenient for analyzing the convergence rate of the
optimization methods in the case of a degenerate minimum point.

This paper is organized as follows. In Section 2, the idea of a family of combined methods for
solving degenerate unconstrained optimization problems, which is based on the spectral decomposition
of the Hessian matrix, is described. Then, as an implementation of this idea, a second-order combined
method is presented in Subsection 2.1. A fourth-order method variant is presented in Subsection 2.2.
Subsection 2.3 proposes an algorithm for finding two step sizes for these methods. Subsection 2.4
analyzes the convergence rate of the presented methods in the neighborhood of the degenerate
minimum point under sufficient fourth-order minimum point conditions from [24]. In Section 3,
the possibility of using quasi-Newton’s variants of the previously described theoretical methods is
considered. In Section 4, a practical adaptive algorithm is proposed, which combines the well-known
BFGS method with the methods described above. Such an algorithm allows adaptation to changes in
the behavior of the objective function during the process of finding minimum. Section 5 presents the
results of testing the proposed adaptive algorithm.

2. Combined methods. Consider the degenerate problem of unconstrained optimization

\mathrm{m}\mathrm{i}\mathrm{n} f(x), x \in \BbbR n, (1)

where f(x) is a p, p \geq 4, times differentiable function.

Let x\ast \in \BbbR n be a local minimum point of the function f(x). Assume that the Hessian matrix
f (2)(x\ast ) is degenerate, but it does not vanish identically.

The following notation is used [24]: R1 = \mathrm{K}\mathrm{e}\mathrm{r} (f (2)(x\ast )) = \{ x \in \BbbR n | f (2)(x\ast )x = 0\} is the
kernel of the Hessian matrix f (2)(x\ast ); R2 is an orthogonal complement of the subspace R1 (that is,
\BbbR n = R1 \oplus R2 ); P is an orthogonal projector onto the subspace R1; P

\bot is an orthogonal projector
onto the subspace R2; f

(l)(x\ast ) is the lth derivative off(x) at the point x\ast ; f (l)(x\ast )[ui, vl - i] is a
multilinear form of l arguments u, v \in \BbbR n (the superscripts i and (l - i) indicate the multiplicity of
the corresponding argument). Note that the value of a symmetric multilinear form is invariant under
various permutations of the arguments.
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In addition, let \BbbR (n)p/2 denote the (n \times n \times . . . \times n)-dimensional space of
\Bigl( p
2

\Bigr) 
-dimensional

arrays. Therefore, f ( p
2
+1)(x\ast ) can be considered as a linear mapping from \BbbR (n)p/2 to \BbbR n. Moreover,\Bigl( 

f ( p
2
+1)(x\ast )

\Bigr) T
is a linear mapping from \BbbR n to \BbbR (n)p/2 . Note that f ( p

2
+1)(x\ast ) and

\Bigl( 
f ( p

2
+1)(x\ast )

\Bigr) T

are conjugate. In addition, f (p)(x\ast ) can be looked upon as a linear mapping from \BbbR (n)p/2 to \BbbR (n)p/2 ,

that is, the value of the multilinear form f (p)(x\ast )[up] = UT f (p)(x\ast )U, where U \in \BbbR (n)p/2 , is a\Bigl( p
2

\Bigr) 
-dimensional matrix with elements Ui,j,...,k = uiuj . . . uk.

Now we develop some second and higher-order combined methods for solving the degenerate
problem (1). Consider an infinite sequence of iterates \{ x(k)\} defined as follows:

x(k+1) = x(k) + \alpha k1u
(k)
1 + \alpha k2u

(k)
2 , k = 0, 1, 2, . . . , (2)

where x(0) is an initial approximation of the minimum point, u(k)1 , u
(k)
2 are orthogonal vectors, and

\alpha k1 > 0 and \alpha k2 > 0 are step sizes along the directions u
(k)
1 , u

(k)
2 . At each step the method involves

taking u
(k)
2 \in \mathrm{K}\mathrm{e}\mathrm{r} (f (2)(x(k))) and the vector u

(k)
1 that belongs to the orthogonal complement of

\mathrm{K}\mathrm{e}\mathrm{r} (f (2)(x(k))).

To correctly determine the rank of the matrix Hk = f (2)(x(k)) and find the orthogonal projectors
onto the corresponding subspaces, the following approach is considered.

Since the matrix Hk is symmetric, according to the spectral decomposition [21], it can be
factorized as

Hk = Qk\Lambda kQ
T
k , (3)

where Qk is an orthogonal matrix, \Lambda k = \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g} (\lambda 
(k)
i ) is a diagonal matrix whose diagonal elements

\lambda 
(k)
i , i = 1, . . . , n, are the eigenvalues of the matrix Hk, sorted in descending order by absolute

value.
The eigenvalues of Hk can be rearranged to present \Lambda k in the form

\Lambda k =

\Biggl[ 
\Lambda k1 0

0 \Lambda k2

\Biggr] 
, (4)

where \Lambda k1 = \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g} (\lambda 
(k)
i ), | \lambda (k)

i | > \varepsilon , i = 1, . . . , rk, rk \leq n, \varepsilon > 0 is a regularization parameter of

the numerical method [3], \Lambda k2 = \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g} (\lambda 
(k)
i ), | \lambda (k)

i | \leq \varepsilon , i = (rk + 1), . . . , n. Then the matrix Qk

is also partitioned into two blocks Qk =
\bigl[ 
Qk1 Qk2

\bigr] 
, where Qk1 is an (n\times rk)-matrix, Qk2 is an

((n - rk)\times n)-matrix.
By using (3) and (4), we obtain the following:

Hk =
\bigl[ 
Qk1 Qk2

\bigr] \Biggl[ \Lambda k1 0

0 \Lambda k2

\Biggr] \Biggl[ 
QT

k1

QT
k2

\Biggr] 
= Qk1\Lambda k1Q

T
k1 +Qk2\Lambda k2Q

T
k2 = Hk\varepsilon + Ek\varepsilon ,

where Hk\varepsilon = Qk1\Lambda k1Q
T
k1 ,Ek\varepsilon = Qk2\Lambda k2Q

T
k2 = Hk  - Hk\varepsilon .

Thus, we have constructed the orthogonal projectors Pk = I  - Qk1Q
T
k1 and P\bot 

k = I  - Pk =

Qk1Q
T
k1 (where I is an identity matrix) onto the subspace \mathrm{K}\mathrm{e}\mathrm{r} (Hk\epsilon ) = \{ x \in \BbbR n | Hk\epsilon x = 0\} and

the orthogonal complement of it, respectively. Note that from the orthogonality of the matrix Qk, it
follows that Pk = Qk2Q

T
k2.

ISSN 1027-3190. Укр. мат. журн., 2024, т. 76, № 5



698 VIKTOR ZADACHYN, MAXIM BEBIYA

2.1. Second-order combined method. Let us put g(k) = f (1)(x(k)). The function f(x), in a
neighborhood of x(k), is approximated by the following function:

fk2(x) = fk2(u1, u2) = f(x(k)) + (P\bot 
k g(k), u1)

+ (Pkg
(k), u2) +

1

2
Hk\varepsilon 

\bigl[ 
(u1)

2
\bigr] 
+

1

2
\varepsilon Qk2Q

T
k2

\bigl[ 
(u2)

2
\bigr] 
, (5)

which is obtained from the second-order Taylor approximation after replacing the matrix Ek\varepsilon with
the matrix \varepsilon Qk2Q

T
k2 = \varepsilon Pk, and using x - x(k) = u1 + u2, u1= P\bot 

k (x - x(k)), u2= Pk(x - x(k)),

Hk\varepsilon u2 = 0, Pku1 = 0.

Then the vectors u
(k)
1 , u

(k)
2 from (2) are determined as the minimum point of the function

fk2(u1, u2). Therefore, they satisfy the following system of equations:

\partial fk2(u1, u2)

\partial u1
= P\bot 

k g(k) +Hk\varepsilon u1 = 0, (6)

\partial fk2(u1, u2)

\partial u2
= Pkg

(k) + \varepsilon , u2 = 0. (7)

From the equation (6), it is deduced that u1 =  - H+
k\varepsilon P

\bot 
k g(k), where H+

k\varepsilon is a pseudoinverse matrix [5]
of the matrix Hk\varepsilon . Therefore, from (3) and the orthogonality of the matrix Qk, it follows that
H+

k\varepsilon = (QT
k1)

+\Lambda  - 1
k1 (Qk1)

+ = Qk1\Lambda 
 - 1
k1 Q

T
k1. Thus,

u
(k)
1 =  - H+

k\varepsilon P
\bot 
k g(k) =  - Qk1\Lambda 

 - 1
k1 Q

T
k1P

\bot 
k g(k). (8)

Finally, the vector u2 is easily obtained from the equation (7):

u
(k)
2 =  - \varepsilon  - 1Pkg

(k). (9)

Note that the method described by (2), (8), (9) for solving the degenerate problem (1) is a
combination of Newton’s method and the method of steepest descent. At each kth iteration, the
entire space \BbbR n is represented as the direct sum of two subspaces \mathrm{K}\mathrm{e}\mathrm{r} (Hk\varepsilon ) and the orthogonal
complement of \mathrm{K}\mathrm{e}\mathrm{r} (Hk\varepsilon ). The method of steepest descent is applied to \mathrm{K}\mathrm{e}\mathrm{r} (Hk\varepsilon ), and Newton’s
method is applied to the orthogonal complement of \mathrm{K}\mathrm{e}\mathrm{r} (Hk\varepsilon ). Moreover, the regularization parameter
of the numerical method \varepsilon is used to divide the entire space into two orthogonal subspaces. This
leads us to the problem of determining two step sizes ak1 and ak2 involved in (2).

2.2. Fourth-order combined method. This subsection considers an optimization technique that
requires the third- and fourth-order derivatives information. Generally, calculation of higher-order
derivatives is time consuming. From practical point of view, such methods are often not very useful
despite their theoretical significance. However, if the kernel of the Hessian matrix is one-dimensional
(that is, \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k} (Hk\varepsilon ) = n - 1), this approach becomes quite effective.

First, f(k) is approximated in a neighborhood of x(k) by the following function:

fk4(x) = fk4(u1, u2) = f(x(k)) + (P\bot 
k g(k), u1) + (Pkg

(k), u2) +
1

2
Hk\varepsilon [(u1)

2] +
1

2
Ek

\bigl[ 
(u2)

2
\bigr] 

+
1

2
f (3)(x(k))[u1, (u2)

2] +
1

6
f (3)(x(k))

\bigl[ 
(u2)

3
\bigr] 
+

1

24
f (4)(x(k))[(u2)

4].

(10)

ISSN 1027-3190. Укр. мат. журн., 2024, т. 76, № 5



COMBINED METHODS FOR SOLVING DEGENERATE UNCONSTRAINED OPTIMIZATION PROBLEMS 699

Algorithm 1 . Second-order combined method

Input: initial point x(0); regularization parameter \varepsilon > 0; algorithm of one-dimensional minimization
OneDimMin (which is given in Subsection 2.3); algorithm of spectral decomposition of a matrix eigen
(which is a standard function in R); maximum number of iterations K; by the gradient \mathrm{t}\mathrm{o}\mathrm{o}\mathrm{l}_\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d} > 0;

accuracy by the argument \mathrm{t}\mathrm{o}\mathrm{o}\mathrm{l}_\mathrm{a}\mathrm{r}\mathrm{g} > 0; accuracy by the function \mathrm{t}\mathrm{o}\mathrm{o}\mathrm{l}_\mathrm{f}\mathrm{u}\mathrm{n} > 0.

1: initialization: k = 0; f0 = f(x(0)); g(0) = f (1)(x(0)); H0 = f (2)(x(0));

2: while \| g(k)\| > \mathrm{t}\mathrm{o}\mathrm{o}\mathrm{l}_\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}:

3: (\Lambda k, Qk) = eigen (Hk, symmetric = TRUE), \Lambda k = \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g} (\lambda 
(k)
1 , . . . , \lambda 

(k)
n ), \lambda 

(k)
i \geq \lambda 

(k)
i+1\forall i;

4: initialization: rk = 0;

5: for i = 0, . . . , n :

6: if | \lambda (k)
i | > \varepsilon then rk = rk + 1;

7: if \lambda 
(k)
i <  - \varepsilon then \lambda 

(k)
i =  - \lambda 

(k)
i ;

8: if rk = n then
9: u(k) =  - Qk\Lambda 

 - 1
k QT

k g
(k);

10: \alpha k is determined as a minimum point of the function of one variable \varphi 1(\alpha ) = f(x(k)+\alpha u(k))

with the initial approximation \alpha 0 = 1

[\alpha k, x
(k+1), fk+1] = OneDimMin(x(k), fk, u(k), 1);

11: else

12: Qk =
\bigl[ 
Qk1 Qk2

\bigr] 
,\Lambda k =

\biggl[ 
\Lambda k1 0

0 \Lambda k2

\biggr] 
13: u

(k)
1 =  - Qk1\Lambda 

 - 1
k1 Q

T
k1g

(k) , u(k)2 =  - \varepsilon  - 1Qk2Q
T
k2g

(k).

14: \alpha k1 is determined as a minimum point of the function of one variable \varphi 1(\alpha ) = f(x(k) + \alpha u
(k)
1 )

with the initial approximation \alpha 0 = 1

[\alpha k1, \^x
(k+1), \^fk+1] = OneDimMin(x(k), fk, u

(k)
1 , 1), where \^x(k+1) = x(k)+\alpha k1u

(k)
1 , \^fk+1 =

f(\^x(k+1));

\alpha k2 is determined as a minimum point of the function of one variable \varphi 2(\alpha ) = f(x(k) +

\alpha k1u
(k)
1 + \alpha u

(k)
2 ) with the initial approximation \alpha 0 = \mathrm{m}\mathrm{a}\mathrm{x} (1, a(k - 1),2);

[\alpha k2, x
(k+1), fk+1] = OneDimMin(\^x(k+1), \^fk+1, u

(k)
2 ,\mathrm{m}\mathrm{a}\mathrm{x} (1, \alpha (k - 1),2));

15: if \| x(k+1)  - x(k)\| /(1 + \| x(k+1)\| ) \leq \mathrm{t}\mathrm{o}\mathrm{o}\mathrm{l}_\mathrm{a}\mathrm{r}\mathrm{g} then break with code = 1;

16: if | fk+1  - fk| /(1 + | fk+1| ) \leq \mathrm{t}\mathrm{o}\mathrm{o}\mathrm{l}_\mathrm{f}\mathrm{u}\mathrm{n} then break with code = 2;

17: x(k) = x(k+1) : fk = fk+1; k = k + 1; g(k) = f (1)(x(k));

18: if \| g(k)\| \leq \mathrm{t}\mathrm{o}\mathrm{o}\mathrm{l}_\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d} then break with code=0;

19: if k > K then break with code = 3;

20: Hk = f (2)(x(k));

Output: last x(k), fk, g(k), k.

Approximation (10) is obtained by the fourth-order Taylor expansion

f(x) = f(x(k)) + (g(k), x - x(k)) +
1

2
f (2)(x(k))

\bigl[ 
(x - x(k))2

\bigr] 
+

1

6
f (3)(x(k))

\bigl[ 
(x - x(k))3

\bigr] 
+

1

24
f (4)(x(k))

\bigl[ 
(x - x(k))4

\bigr] 
+O

\bigl( 
\| x - x(k)\| 5

\bigr) 
,
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and by using the fact that x - x(k) = u1 + u2, u1 = P\bot 
k (x - x(k)), u2 = Pk(x - x(k)), Hk\varepsilon u2 = 0,

and Ek\varepsilon u1 = 0. Ignore the terms
1

6
f (3)(x(k))[(u1)

3],
1

2
f (3)(x(k))[(u1)

2, u2],
1

24
f (4)(x(k))[(u1)

4]

and the terms of higher order O(\| u1\| 2), O(\| u1\| \| u2\| 2), O(\| u2\| 4) to get (10).

Second, the vectors u
(k)
1 , u

(k)
2 are defined as the minimum point of the function fk4(u1, u2).

Thus, u(k)1 , u
(k)
2 satisfy the system of equations:

\partial fk4(u1, u2)

\partial u1
= P\bot 

k g(k) +Hk\varepsilon u1 +
1

2
P\bot 
k f (3)(x(k))

\bigl[ 
(u2)

2
\bigr] 
= 0, (11)

\partial fk4(u1, u2)

\partial u2
= Pkg

(k) + Ek\varepsilon u2 + f (3)(x(k))[u1, u2]

+
1

2
f (3)(x(k))

\bigl[ 
(u2)

2
\bigr] 
+

1

6
f (4)(x(k))

\bigl[ 
(u2)

3
\bigr] 
= 0. (12)

Note that (11) is linear in u1 and (12) is cubic in u2 and can be easily simplified. Using (11), u1 is
expressed in terms of u2 :

u1 =  - H+
k\varepsilon P

\bot 
k g(k)  - 1

2
H+

k\varepsilon f
(3)(x(k))

\bigl[ 
(u2)

2
\bigr] 
. (13)

Substituting the expression for u1 from (13) into (12), we get

P(k)g
(k) + Ek\varepsilon u2 + Pkf

(3)(x(k))
\Bigl[ \bigl( 
 - H+

k\varepsilon P
\bot 
k g(k)  - 1

2
H+

k\varepsilon f
(3)(x(k))[(u2)

2]
\bigr) 
, u2

\bigr) 
+

1

2
Pkf

(3)(x(k))[(u2)
2] +

1

6
Pkf

(4)(x(k))
\bigl[ 
(u2)

3
\bigr] 
= 0.

Finally, u2 is determined from

Pkg
(k) + Ek\varepsilon u2  - Pkf

(3)(x(k))
\bigl[ 
(H+

k\varepsilon P
\bot 
k g(k)), u2

\bigr] 
+

1

2
Pkf

(3)(x(k))[(u2)
2]

+
1

6
Pk

\bigl( 
f (4)(x(k)) - 3

\bigl( 
f (3)(x(k))

\bigr) T
H+

k\varepsilon f
(3)(x(k))

\bigr) \bigl[ 
(u2)

3
\bigr] 
= 0. (14)

System (14) can be solved numerically, for example, by Newton’s method. Note that the matrix
coefficient of (u2)

3 corresponds to the sufficient condition for a minimum of the 4th order (2.20)
in [24].

Practical implementation of this method proved to be difficult in view of necessity to calculate
the derivatives of the function f(x) up to the fourth-order and to solve the system (14).

Consider the case of the one-dimensional kernel of the Hessian matrix in a neighborhood of the
minimum point, that is, \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k} (Hk\varepsilon ) = rk = n - 1.

Lemma 2.1. Suppose that \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k} (Hk\varepsilon ) = rk = n  - 1. Then the solution of the system (14) can
be represented in the form

u2 = \mu \cdot s \cdot q(n)k , (15)

where q
(n)
k is the last nth column of the matrix Qk given by (3), s = \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}

\bigl( \bigl( 
g(k)

\bigr) T
q
(n)
k

\bigr) 
, \mu < 0

satisfies the following cubic equation
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\alpha + b\mu +
1

2
c\mu 2 +

1

6
d\mu 3 = 0 (16)

with the coefficients \alpha =
\bigm| \bigm| (g(k))T q(n)k

\bigm| \bigm| , b = \lambda 
(k)
n  - (Qk1\Lambda 

 - 1
k1 Q

T
k1g

(k))T y(k), c = s
\partial 3\varphi (0)

\partial \alpha 3
, d =\biggl( 

\partial 4\varphi (0)

\partial \alpha 4
 - 3(y(k))TQk1\Lambda 

 - 1
k1 Q

T
k1y

(k)

\biggr) 
, where \varphi (\alpha ) = f

\bigl( 
x(k) + \alpha q

(n)
k

\bigr) 
, y(k) =

\partial 2\theta (0)

\partial \alpha 2
, \theta (\alpha ) =

f (1)(x(k) + \alpha q
(n)
k ).

Proof. Since \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k} (Hk\varepsilon ) = n  - 1, the dimension of \mathrm{K}\mathrm{e}\mathrm{r} (Hk\varepsilon ) is equal to 1, and Qk2 = q
(n)
k .

Moreover, the orthogonal projector onto the subspace \mathrm{K}\mathrm{e}\mathrm{r} (Hk\varepsilon ) is Pk = q
(n)
k

\bigl( 
q
(n)
k

\bigr) T
and Ek\varepsilon =

q
(n)
k \lambda 

(k)
n

\bigl( 
q
(n)
k

\bigr) T
.Thus, any vector u2 that belongs to \mathrm{K}\mathrm{e}\mathrm{r} (Hk\varepsilon ) is collinear with the vector q(n)k , and

therefore u2 can be represented in the form (15). In addition, if the constant \mu is negative, then the
descent direction condition will hold for the vector u2 :

(g(k))Tu2 = (Pkg
(k))Tu2 = \mu \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}

\bigl( 
(g(k))T q

(n)
k

\bigr) 
(Pkg

(k))T q
(n)
k

= \mu \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}
\bigl( 
(g(k))T q

(n)
k

\bigr) 
(g(k))T q

(n)
k

\bigl( 
q
(n)
k

\bigr) T
q
(n)
k

= \mu \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}
\bigl( 
(g(k))T q

(n)
k

\bigr) 
(g(k))T q

(n)
k = \mu 

\bigm| \bigm| (g(k))T q(n)k

\bigm| \bigm| < 0.

Thus, it remains to determine the constant \mu < 0. Substitute u2, given by (15) into (14) to get

Pkg
(k) + \mu sEk\varepsilon q

(n)
k  - \mu sPkf

(3)(x(k))
\bigl[ 
(H+

k\varepsilon P
\bot 
k g(k)), q

(n)
k

\bigr] 
+

1

2
\mu 2Pkf

(3)(x(k))
\bigl[ \bigl( 
q
(n)
k

\bigr) 2\bigr] 
+

1

6
\mu 3sPk

\Bigl( 
f (4)(x(k)) - 3

\bigl( 
f (3)(x(k))

\bigr) T
H+

k\varepsilon f
(3)(x(k))

\Bigr) \bigl[ 
(q

(n)
k )3

\bigr] 
= 0. (17)

Performing scalar product on both sides of the system (17) with the same vector sq
(n)
k gives the

following cubic equation for the scalar \mu < 0:

a+ b\mu +
1

2
c\mu 2 +

1

6
d\mu 3 = 0, (18)

where a =
\bigm| \bigm| (Pkg

(k))T q
(n)
k

\bigm| \bigm| =
\bigm| \bigm| (g(k))T q(n)k

\bigm| \bigm| , b = \lambda 
(k)
n  - f (3)(x(k))

\bigl[ 
(H+

k\varepsilon P
\bot 
k g(k)),

\bigl( 
q
(n)
k

\bigr) 2\bigr] 
, c =

sf (3)(x(k))
\bigl[ \bigl( 
q
(n)
k

\bigr) 3\bigr] 
, d = (f (4)(x(k))  - 3

\bigl( 
f (3)(x(k))

\bigr) T
H+

k\varepsilon f
(3)(x(k))

\bigr) \bigl[ 
(q

(n)
k )4

\bigr] 
. The coefficient d

in (18) must be positive when the sufficient condition for a minimum of the 4th order (2.20) in [24]
is satisfied.

Note that the value of the multilinear form f (4)(x(k))
\bigl[ 
(q

(n)
k )4

\bigr] 
is equal to the value of the fourth

directional derivative of the function f(x) at the point x(k) in the direction of the vector q
(n)
k , that

is, f (4)(x(k))
\bigl[ \bigl( 
q
(n)
k

\bigr) 4\bigr] 
=

\partial 4\varphi (0)

\partial \alpha 4
, where \varphi (\alpha ) = f

\bigl( 
x(k) + \alpha q

(n)
k

\bigr) 
, \alpha \in \BbbR 1. Similarly, the value of

the multilinear form f (3)(x(k))
\bigl[ \bigl( 
q
(n)
k

\bigr) 3\bigr] 
is equal to the value of the third directional derivative of the

function f(x) at the point x(k) in the direction of q(n)k , that is, f (3)(x(k))
\bigl[ \bigl( 
q
(n)
k

\bigr) 3\bigr] 
=

\partial 3\varphi (0)

\partial \alpha 3
.

Therefore, let us denote

y(k) = f (3)(x(k))
\bigl[ \bigl( 
q
(n)
k

\bigr) 2\bigr] 
. (19)
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Then

b = \lambda (k)
n  - (H+

k\varepsilon P
\bot 
k g(k))T y(k) = \lambda (k)

n  - (Qk1\Lambda 
 - 1
k1 Q

T
k1g

(k))T y(k), c = s
\partial 3\varphi (0)

\partial \alpha 3
,

d =

\biggl( 
\partial 4\varphi (0)

\partial \alpha 4
 - 3(y(k))TH+

k\varepsilon y
(k)

\biggr) 
=

\biggl( 
\partial 4\varphi (0)

\partial \alpha 4
 - 3(y(k))TQk1\Lambda 

 - 1
k1 Q

T
k1y

(k)

\biggr) 
.

The lemma is proved.
Lemma 2.2. The vector u1, as a component of the solution u = u1 + u2 of the system (11),

(12), can be computed using the formula

u1 =  - Qk1\Lambda 
 - 1
k1 Q

T
k1

\biggl( 
g(k) +

\mu 2

2
y(k)

\biggr) 
, (20)

where \mu < 0 is a solution of the cubic equation (16), y(k) is given by (19).
Proof. By using (13) and (15), we get

u1 =  - H+
k\varepsilon P

\bot 
k g(k)  - \mu 2

2
H+

k\varepsilon f
(3)(x(k))

\bigl[ \bigl( 
q
(n)
k

\bigr) 2\bigr] 
=  - H+

k\varepsilon P
\bot 
k g(k)  - \mu 2

2
H+

k\varepsilon y
(k)

=  - H+
k\varepsilon 

\biggl( 
P\bot 
k g(k) +

\mu 2

2
y(k)

\biggr) 
=  - Qk1\Lambda 

 - 1
k1 Q

T
k1

\biggl( 
g(k) +

\mu 2

2
y(k)

\biggr) 
.

So, equality (20) holds.

Formulas (15), (16), and (20) contain the derivatives
\partial 4\varphi (0)

\partial \alpha 4
,
\partial 3\varphi (0)

\partial \alpha 3
, and also f (3)(x(k))

\bigl[ \bigl( 
q
(n)
k

\bigr) 2\bigr] 
.

In practical implementation of the fourth-order method, these derivatives can be calculated numerically,
for example, by the formulas

\partial 4\varphi (0)

\partial \alpha 4
\approx \varphi 0(2h) - 4\varphi 0(h) + 6\varphi 0(0) - 4\varphi 0( - h) + \varphi 0( - 2h)

h4
,

\partial 3\varphi (0)

\partial \alpha 3
\approx \varphi 0(2h) - 2\varphi 0(h) + 2\varphi 0( - h) - \varphi 0( - 2h)

2h3
,

where h > 0 is some small number called step size. Recall that the vector y(k) = f (3)(x(k))
\bigl[ 
(q

(n)
k )2

\bigr] 
is, in fact, the second directional derivative of the vector function f (1)(x) at the point x(k) in the direct-

ion of q(n)k . So, f (3)(x(k))
\bigl[ \bigl( 
q
(n)
k

\bigr) 2\bigr] 
=

\partial 2\theta (0)

\partial \alpha 2
, where \theta (\alpha ) = f (1)(x(k) +\alpha q

(n)
k ). Then the elements

y
(k)
i , i = 1, . . . , n, of the vector y(k) can be calculated numerically, for example, by one of two formu-

las y
(k)
i \approx \theta i(h) - 2\theta i(0) + \theta i( - h)

h2
, y(k) \approx 

f (1)(x(k) + hq
(n)
k ) - 2f (1)(x(k)) + f (1)(x(k)  - hq

(n)
k )

h2
.

2.3. Algorithms for determining Step Sizes. First, consider the second-order combined method
described by (2), (8), and (9) for solving the degenerate problem (1). We propose an algorithm to
determine the step sizes \alpha k1 > 0 and \alpha k2 > 0 involved in (2) for the combined second-order method.
This algorithm is based on the idea similar to the Hooke – Jeeves method for solving unconstrained
optimization problems.

Initially, the step size \^\alpha k1 > 0 is defined as a minimum point of the function of one variable
\varphi 1(\alpha ) = f(x(k) + \alpha u

(k)
1 ). Secondly, the step size \^\alpha k2 > 0 is defined as a minimum point of the

function of one variable \varphi 2(\alpha ) = f(x(k) + \^\alpha k1u
(k)
1 + \alpha u

(k)
2 ). Afterwards, the step size \alpha k > 0 is
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Algorithm 2 . Fourth-order combined method

Input: initial point x0; regularization parameter \varepsilon > 0; algorithm one-dimensional minimization
OneDimMin (which is given in Subsection 2.3); algorithm of spectral decomposition of a matrix
eigen (which is a standard function in R); maximum number of iterations K; accuracy by the gradient
tool_grad > 0; accuracy by the argument \mathrm{t}\mathrm{o}\mathrm{o}\mathrm{l}_\mathrm{a}\mathrm{r}\mathrm{g} > 0; accuracy by the function \mathrm{t}\mathrm{o}\mathrm{o}\mathrm{l}_\mathrm{f}\mathrm{u}\mathrm{n} > 0.

1: Initialization: k = 0; f0 = f(x(0)); g(0) = f (1)(x(0)); H0 = f (2)(x(0));

2: while \| g(k)\| > \mathrm{t}\mathrm{o}\mathrm{o}\mathrm{l}_\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d} :

3: (\Lambda k, Qk) = eigen (Hk, symmetric = TRUE), \Lambda k = \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g} (\lambda 
(k)
1 , . . . , \lambda 

(k)
n ), \lambda 

(k)
i \geq \lambda 

(k)
i+1;

4: initialization: rk = 0;

5: for i = 0, . . . , n :

6: if | \lambda (k)
i | > \varepsilon then rk = rk + 1;

7: if \lambda 
(k)
i <  - \varepsilon then \lambda 

(k)
i =  - \lambda 

(k)
i ;

8: if rk = n then
9: u(k) =  - Qk\Lambda 

 - 1
k QT

k g
(k);

10: else

11: Qk =
\bigl[ 
Qk1 Qk2

\bigr] 
, \Lambda k =

\biggl[ 
\Lambda k1 0

0 \Lambda k2

\biggr] 
12: calculate arrays f (3)(x(k)), f (4)(x(k));

13: u
(k)
2 is determined as a solution of system (14);

14: u
(k)
1 is calculated by (13);

15: u(k) = u
(k)
1 + u

(k)
2 ;

16: ak is determined as a minimum point of the function of one variable \varphi 3(\alpha ) = f(x(k) + \alpha u(k))

with the initial approximation \alpha 0 = 1

17: [\alpha k, x
(k+1), fk+1] = OneDimMin(x(k), fk, u(k), 1);

18: if \| x(k+1)  - x(k)\| /(1 + \| x(k+1)\| ) \leq \mathrm{t}\mathrm{o}\mathrm{o}\mathrm{l}_\mathrm{a}\mathrm{r}\mathrm{g} then break with code=1;

19: if | fk+1  - fk| /(1 + | fk+1| ) \leq \mathrm{t}\mathrm{o}\mathrm{o}\mathrm{l}_\mathrm{f}\mathrm{u}\mathrm{n} then break with code = 2;

20: x(k) = x(k+1) : fk = fk+1; k = k + 1; g(k) = f (1)(x(k));

21: if \| g(k)\| \leq \mathrm{t}\mathrm{o}\mathrm{o}\mathrm{l}_\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d} then break with code=0;

22: if k > K then break with code = 3;

23: Hk = f (2)(x(k));
Output: last x(k), fk, g(k), k.

determined as a minimum point of the function of one variable \varphi 3(\alpha ) = f(x(k) + \alpha u(k)), where

u(k) = \^\alpha k1u
(k)
1 + \^\alpha k2u

(k)
2 .

These one-dimensional minimization problems for the functions \varphi i(\alpha ), i = 1, 2, 3, may be solved
numerically, according to the following algorithm. First, suppose some initial value \alpha = \alpha 0 is chosen.
If \varphi i(\alpha ) < \varphi i(0), then \alpha doubles until the function \varphi i(\alpha ) decreases. If \varphi i(\alpha ) > \varphi i(0), then \alpha is
halved until the condition \varphi i(\alpha ) \leq \varphi i(0) is satisfied. Then the approximate minimum point of the
function \varphi i(\alpha )(i = 1, 2) is calculated as the minimum point of the quadratic function constructed
from the last three best points (provided that the values at these points are different), and the function
\varphi 3(\alpha ) is calculated as the local minimum point of the cubic function constructed from the four last
best points.
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Algorithm 3 . One-dimensional minimization

Input: x(k) is a current point; fk is the value of f(x) at the point x(k);u(k) is a search direction;
initial value of the step size \rho > 0.

1: function definition \varphi (\alpha ) = f(x(k) + \alpha u(k));

2: initialization: \alpha 0 = 0;\varphi 0 = fk;

3: \alpha 1 = \rho ;\varphi 1 = \varphi (\alpha 1);

4: if \varphi 1 < \varphi 0 then
\alpha 2 = 2\alpha 1;\varphi 2 = \varphi (\alpha 2);

5: while \varphi 1 < \varphi 0 :

6: \alpha 0 = \alpha 1;\varphi 0 = \varphi 1;

7: \alpha 1 = \alpha 2;\varphi 1 = \varphi 2;

8: \alpha 2 = 2\alpha 1;\varphi 2 = \varphi (\alpha 2);

9: else:
10: while \varphi 1 > \varphi 0 :

11: \alpha 2 = \alpha 1;\varphi 2 = \varphi 1;

12: \alpha 1 = \alpha 1/2;\varphi 1 = \varphi (\alpha 1);

13: a3 is determined as a minimum point of the quadratic function that fits to the following three
points (a0, \varphi 0), (a1, \varphi 1), (a2, \varphi 2);

14: \varphi 3 = \varphi (\alpha 3);

15: if \varphi 3 < \varphi 1 then
16: \alpha 1 = \alpha 3;\varphi 1 = \varphi 3;

Output: a1, x(k+1) = x(k) + \alpha 1u
(k), fk+1 = \varphi 1.

To find the approximate minimum of the function \varphi 1(\alpha ), the initial value \alpha 0 = 1 is taken. To
minimize \varphi 2(\alpha ), it is possible to take the initial value \alpha 0 = \mathrm{m}\mathrm{a}\mathrm{x} (1, \alpha (k - 1),2), where \alpha (k - 1),2 is the
value of the step size \alpha k2, obtained at the previous iteration.

Such an algorithm for choosing sizes of the steps \alpha k1 > 0 and \alpha k2 > 0 can be interpreted as
follows. When the minimum point degenerates, in its neighborhood the objective function becomes
“ravine”, that is, across the “ravine” it is steep, and along the “ravine” it is sloping. Therefore, along
the “ravine” (that is, in the subspace \mathrm{K}\mathrm{e}\mathrm{r} (Hk\varepsilon )), it is necessary to take the largest possible step,
while across the “ravine” (that is, in the orthogonal complement of \mathrm{K}\mathrm{e}\mathrm{r} (Hk\varepsilon )), the step is most likely
close to unity.

Now consider the fourth-order combined method defined by (2), (13), and (14) for solving the
degenerate problem (1). In this method, the step sizes \alpha k1 and \alpha k2, involved in (2), can be taken
equal to each other. So, the iterative formula (2) becomes

x(k+1) = x(k) + \alpha k(u
(k)
1 + u

(k)
2 ), k = 0, 1, 2, . . . . (21)

Then the step size \alpha k > 0 is found as an approximate minimum point of the function of one
variable \varphi 3(\alpha ) = f

\bigl( 
x(k) + \alpha (u

(k)
1 + u

(k)
2 )

\bigr) 
according to the algorithm described above for finding

the minimum point of the function \varphi 1(\alpha ). The initial value for \alpha is 1.
2.4. Analysis of the convergence rate of methods. To analyze the convergence rate of the

methods, it is convenient to use the generalized necessary and sufficient conditions for a minimum
of a degenerate unconstrained optimization problem proposed in [24]. The following two theorems
were proved in [24]. We recall that (f (2)(x\ast ))+ is a pseudoinverse matrix [5] of f (2)(x\ast ), P is an
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orthogonal projector onto the subspace R1;P
\bot is an orthogonal projector onto the subspace R2, then

P = I  - (f (2)(x\ast ))+f (2)(x\ast ), P\bot = (f (2)(x\ast ))+f (2)(x\ast ).

Theorem 2.1 (generalized necessary conditions for a minimum). Let f(x) have a minimum at
x\ast \in \BbbR n. Suppose that f(x) is p times (p \geq 4, p is even) continuously differentiable in some
neighborhood V (x\ast ) of the point x\ast and, for all u \in \BbbR n, the following condition holds:

f (2l)(x\ast )[(Pu)2l] = 0, where l = 1, . . . ,
p

2
 - 1. (22)

Then, for all u \in \BbbR n, the following is true:

f (1)(x\ast ) = 0, f (2)(x\ast )[u2] \geq 0, (23)

f (2)(x\ast )[(P\bot u)2] \geq m2\| P\bot u\| 2, (24)

f (2l+1)(x\ast )[(Pu)2l+1] = 0, where = 1, . . . ,
p

2
 - 1, f (p)(x\ast )[(Pu)p] \geq 0, (25)

f (l+1)(x\ast )
\bigl[ 
(P\bot u), (Pu)l

\bigr] 
= 0, where l = 1, . . . ,

p

2
 - 1, (26)\biggl( 

f (p)(x\ast ) - p!

2
\Bigl( \Bigl( p

2

\Bigr) 
!
\Bigr) 2 (f

( p
2
+1)(x\ast ))T (f (2)(x\ast ))+(f ( p

2
+1)(x\ast ))

\biggr) 
[(Pu)p] \geq 0,

where m2 > 0.

Theorem 2.2 (generalized sufficient conditions for a minimum). Suppose that f(x) is p times
(p \geq 4, p is even) continuously differentiable in some neighborhood V (x\ast ) of x\ast , at which the
conditions (22) – (26) are satisfied. In addition, assume that for all u \in \BbbR n, the following estimate
holds:\left(   f (p)(x\ast ) - p!

2
\Bigl( \Bigl( p

2

\Bigr) 
!
\Bigr) 2 (f

( p
2
+1)(x\ast ))T (f (2)(x\ast ))+(f ( p

2
+1)(x\ast ))

\right)   [(Pu)p] \geq mp\| Pu\| p, (27)

where mp > 0. Then x\ast is a point where f(x) has a strict local minimum. Moreover, for all x in
some sufficiently small neighborhood of x\ast , the following inequality is fulfilled:

f(x) - f(x\ast ) \geq m0(\| P\bot v\| 2 + \| Pv\| p), (28)

where v = x - x\ast ,m0 > 0.

The following lemma is also needed for the further analysis.
Lemma 2.3. Suppose that the function f(x) satisfies the conditions of Theorem 2.2 except the

condition (27). Assume that for all u \in \BbbR n, the following condition is fulfilled:\left(   f (p)(x\ast ) - (p/2 + 1)2(p - 1)!

4
\Bigl( \Bigl( p

2

\Bigr) 
!
\Bigr) 2 (f ( p

2
+1)(x\ast ))T (f (2)(x\ast ))+(f ( p

2
+1)(x\ast ))

\right)   [(Pu)p] \geq \=mp\| Pu\| p,

(29)
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where \=mp > 0. Then the condition (27) is true, and for all x from some sufficiently small neighborhood
V (x\ast ), in addition to the estimate (28), the following estimate holds:\bigl( 

f (1)(x)
\bigr) T

(x - x\ast ) \geq m1(\| P\bot v\| 2 + \| Pv\| p), (30)

where v = x - x\ast ,m1 > 0.

Proof. First, let us show that the inequality (27) follows from the inequality (29). Consider the
multilinear form (f ( p

2
+1)(x\ast ))T (f (2)(x\ast ))+(f ( p

2
+1)(x\ast ))[(Pu)p], which appears in the conditions (27)

and (29), and prove that its value is nonnegative for all u \in \BbbR n.

Let z = f ( p
2
+1)(x\ast )[(Pu)p/2]. Note that z \in \BbbR n; therefore,

(f ( p
2
+1)(x\ast ))T (f (2)(x\ast ))+(f ( p

2
+1)(x\ast ))[(Pu)p] = (f (2)(x\ast ))+[z2] \geq 1

\lambda \mathrm{m}\mathrm{a}\mathrm{x}
\| P\bot z\| 2 \geq 0,

where \lambda \mathrm{m}\mathrm{a}\mathrm{x} is the largest eigenvalue of the matrix f (2)(x\ast ).

The coefficient
(p/2 + 1)2(p - 1)!

4
\Bigl( \Bigl( p

2

\Bigr) 
!
\Bigr) 2 in the inequality (29) is greater than the coefficient

p!

2
\Bigl( \Bigl( p

2

\Bigr) 
!
\Bigr) 2

for all p \geq 4. Thus, if the inequality (29) is satisfied, then (27) is also true.
Since the function f(x) is p times continuously differentiable on the neighborhood V (x\ast ) of the

point x\ast , using the Taylor series expansion for all x \in V (x\ast ), it follows that

f (1)(x) = f (1)(x\ast ) +

p\sum 
l=2

1

(l  - 1)!
f (l)(x\ast )[(v)l - 1] +O(\| v\| p),

where v = x  - x\ast . Then, for the sufficiently small neighborhood V (x\ast ), taking into account the
conditions (22) – (26) it is deduced that\bigl( 

f (1)(x)
\bigr) T

(x - x\ast )

= f (2)(x\ast )[(P\bot v)2] +

p\sum 
l=3

1

(l  - 1)!

l\sum 
i=0

Ci
l f

(l)(x\ast )
\bigl[ 
(P\bot v)l - i, (Pv)l

\bigr] 
+O(\| v\| p+1)

= f (2)(x\ast )[(P\bot v)2] +
p/2 + 1\Bigl( p

2

\Bigr) 
!
f ( p

2
+1)(x\ast )

\bigl[ 
(P\bot v), (Pv)p/2

\bigr] 
+

1

(p - 1)!
f (p)(x\ast )[(Pv)p]

+O
\bigl( 
\| P\bot v\| 3

\bigr) 
+O

\bigl( 
\| P\bot v\| \| Pv\| 

p
2
+1

\bigr) 
+O

\bigl( 
\| P\bot v\| 2\| Pv\| 

p
2
\bigr) 
+O

\bigl( 
\| v\| p+1

\bigr) 
.

Thus,

\bigl( 
f (1)(x)

\bigr) T
(x - x\ast ) = f (2)(x\ast )

\left[  \left(  P\bot v +
p/2 + 1

2
\Bigl( p
2

\Bigr) 
!
(f (2)(x\ast ))+(f ( p

2
+1)(x\ast ))[(Pv)

p
2 ]

\right)  2\right]  

+
1

(p - 1)!

\left(   f (p)(x\ast ) - (p/2 + 1)2(p - 1)!

4
\Bigl( \Bigl( p

2

\Bigr) 
!
\Bigr) 2 (f ( p

2
+1)(x\ast ))T (f (2)(x\ast ))+(f ( p

2
+1)(x\ast ))

\right)   [(Pv)p]
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+O
\bigl( 
\| P\bot v\| 3

\bigr) 
+O

\bigl( 
\| P\bot v\| \| Pv\| 

p
2
+1

\bigr) 
+O

\bigl( 
\| P\bot v\| 2\| Pv\| 

p
2
\bigr) 
+O

\bigl( 
\| v\| p+1

\bigr) 
.

From (24) and (29) it is straightforward that\bigl( 
f (1)(x)

\bigr) T
(x - x\ast )

\geq m2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| P\bot v +
p/2 + 1

2
\Bigl( p
2

\Bigr) 
!
(f (2)(x\ast ))+(f ( p

2
+1)(x\ast ))[(Pv)

p
2 ]

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

+
\=m(p)

(p - 1)!
\| Pu\| p

 - N1\| P\bot v\| 3  - N2\| P\bot v\| \| Pv\| 
p
2
+1  - N3\| P\bot v\| 2\| Pv\| 

p
2  - N4\| v\| p+1, (31)

where N1, N2, N3, and N4 are some positive constants.

Let us consider x \in V (x\ast ) such that \| P\bot v\| \geq p/2 + 1

2
\Bigl( p
2

\Bigr) 
!
\| (f (2)(x\ast ))+\| 

\bigm\| \bigm\| \bigm\| f ( p
2
+1)(x\ast )

\bigm\| \bigm\| \bigm\| \| Pv\| 
p
2 ,

then \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| P\bot v +

p

2
+ 1

2
\Bigl( p
2

\Bigr) 
!
(f (2)(x\ast ))+(f ( p

2
+1)(x\ast ))

\bigl[ 
(Pv)

p
2
\bigr] \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\geq \| P\bot v\|  - 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
p

2
+ 1

2
\Bigl( p
2

\Bigr) 
!
(f (2)(x\ast ))+(f ( p

2
+1)(x\ast ))

\bigl[ 
(Pv)

p
2
\bigr] \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \geq 1

2
\| P\bot v\| ,

Therefore, for a sufficiently small subset of V (x\ast ), the following estimation holds:\bigl( 
f (1)(x)

\bigr) T
(x - x\ast ) \geq 1

2

\biggl( 
m2

4
\| P\bot v\| 2 + \=mp

(p - 1)!
\| Pv\| p

\biggr) 

\geq min

\biggl( 
m2

8
,

\=mp

2(p - 1)!

\biggr) 
(\| P\bot v\| 2 + \| Pv\| p). (32)

Now choose x \in V (x\ast ) such that \| P\bot v\| <

p

2
+ 1

2
\Bigl( p
2

\Bigr) 
!
\| (f (2)(x\ast ))+\| 

\bigm\| \bigm\| \bigm\| f ( p
2
+1)(x\ast )

\bigm\| \bigm\| \bigm\| \| [(Pv)]\| 
p
2 then

\| Pv\| 
p
2 >

2
\Bigl( p
2

\Bigr) 
!

p

2
+ 1

\| (f (2)(x\ast ))+\|  - 1
\bigm\| \bigm\| \bigm\| f ( p

2
+1)(x\ast )

\bigm\| \bigm\| \bigm\|  - 1
\| P\bot v\| . Moreover, from (24) it is clear that

\| (f (2)(x\ast ))+\| \leq 1

m2
, which gives \| Pv\| 

p
2 >

2
\Bigl( p
2

\Bigr) 
!

p

2
+ 1

\| (f (2)(x\ast ))+\|  - 1
\bigm\| \bigm\| \bigm\| f ( p

2
+1)(x\ast )

\bigm\| \bigm\| \bigm\|  - 1
\| P\bot v\| \geq 

2
\Bigl( p
2

\Bigr) 
!

p

2
+ 1

m2

\bigm\| \bigm\| \bigm\| f ( p
2
+1)(x\ast )

\bigm\| \bigm\| \bigm\|  - 1
\| P\bot v\| . Then, from (31), for a sufficiently small subset of V (x\ast ), the

following is obtained:\bigl( 
f (1)(x)

\bigr) T
(x - x\ast ) \geq 1

2

\=mp

(p - 1)!
\| Pv\| p
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\geq 1

4

\=mp

(p - 1)!
\| Pv\| p + 1

4

\=mp

(p - 1)!

\left(  2
\Bigl( p
2

\Bigr) 
!

p

2
+ 1

m2

\right)  2\bigm\| \bigm\| \bigm\| f ( p
2
+1)(x\ast )

\bigm\| \bigm\| \bigm\|  - 2
\| P\bot v\| 2

\geq min

\left(   \=mp

4(p - 1)!
,
1

4

\=mp

(p - 1)!

\left(  2
\Bigl( p
2

\Bigr) 
!

p

2
+ 1

m2

\right)  2\bigm\| \bigm\| \bigm\| f ( p
2
+1)(x\ast )

\bigm\| \bigm\| \bigm\|  - 2

\right)   (\| P\bot v\| 2 + \| Pv\| p).

(33)

Note that this implies the condition
\bigm\| \bigm\| \bigm\| f ( p

2
+1)(x\ast )

\bigm\| \bigm\| \bigm\| > 0. In the case of
\bigm\| \bigm\| \bigm\| f ( p

2
+1)(x\ast )

\bigm\| \bigm\| \bigm\| = 0, that is,

f ( p
2
+1)(x\ast ) = 0, from (31), for a sufficiently small subset of V (x\ast ), the following is obtained:

\bigl( 
f (1)(x)

\bigr) T
(x - x\ast ) \geq 1

2

\bigl( 
m2\| P\bot v\| 2 + \=mp

(p - 1)!
\| Pv\| p

\bigr) 
\geq min

\biggl( 
m2

2
,

\=mp

2(p - 1)!

\biggr) 
(\| P\bot v\| 2 + \| Pv\| p). (34)

Thus, according to (32) – (34), for all x in a sufficiently small deleted neighborhood of x\ast , there is a
positive constant m1 such that the inequality (30) is satisfied.

Corollary 2.1. Suppose that the function f(x) is p times (p \geq 4, p is even) continuously
differentiable in the neighborhood V (x\ast ) of the point x\ast , at which conditions (22) – (26) are satisfied.
Let f (2)(x\ast ) be equal to the zero matrix, and for all u \in \BbbR n, the following holds:

f (p)(x\ast )(Pu)p \geq mp\| Pu\| p, (35)

where mp > 0. Then x\ast is a point of strict local minimum of f(x) and, for all x in a sufficiently
small neighborhood V (x\ast ), the following inequality is fulfilled:

f(x) - f(x)\ast \geq m0\| Pv\| p,\bigl( 
f (1)(x)

\bigr) T
(x - x\ast ) \geq m1\| Pv\| p, (36)

where v = x - x\ast ,m0 > 0,m1 > 0.

The proof follows from Theorem 2.2 and Lemma 2.3, since in this case the projector P\bot = 0,

and the projector P = I, (f (2)(x\ast ))+ = 0.

Now let us analyze the convergence rate of the fourth-order combined method given by (21), (13)
and (14) wherein it is considered ak = 1. For ease of analysis, let us consider the following approach.

The combined fourth-order method described by (21), (13) and (14) is a combination of Newton’s
method and the method that requires the fourth-order derivatives. At each kth iteration, the entire space
\BbbR n is represented as the direct sum of two subspaces \mathrm{K}\mathrm{e}\mathrm{r} (Hk\varepsilon ) and the orthogonal complement of it.
The fourth-order method is applied to \mathrm{K}\mathrm{e}\mathrm{r} (Hk\varepsilon ) and Newton’s method is applied to the orthogonal
complement of it. The convergence rate of the combined method is determined by the performance of
the slowest method of the original two methods. It is well known that Newton’s method in the case of
nondegenerate matrix f (2)(x\ast ) has a quadratic convergence rate. Moreover, the sufficient condition
for a minimum is in the form of inequality (24) (where P\bot = I ).
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It is useful to discuss the fourth-order method given by (21), (13) and (14) in the case of the matrix
f (2)(x\ast ) that is equal to the zero matrix. This simplifies significantly the study of the convergence
rate. In this case, the matrix Hk\varepsilon is equal to the zero matrix near the minimum point x\ast , that is, the
projector P\bot 

k = 0, the projector Pk = I, and the vector u1 = 0. Therefore, (21), (13) and (14) are
simplified.

Approximate the function f(x), for every x in a neighborhood of the point x(k), by the following
function

fk4(x) = fk(u2) = f(x(k)) + (Pkg
(k), u2) +

1

2
Ek

\bigl[ 
(u2)

2
\bigr] 

+
1

6
f (3)(x(k))

\bigl[ 
(u2)

3
\bigr] 
+

1

24
f (4)(x(k))[(u2)

4], (37)

which is obtained using the fourth-order Taylor expansion, where x - x(k) = u2.

The vector u
(k)
2 is defined as the minimum point of the function fk4(u2). So, it satisfies the

following system of equations

\partial fk4(u2)

\partial u2
= Pkg

(k) + Ek\varepsilon u2 +
1

2
Pkf

(3)(x(k))
\bigl[ 
(u2)

2
\bigr] 
+

1

6
Pkf

(4)(x(k))
\bigl[ 
(u2)

3
\bigr] 
= 0. (38)

However, the function fk4(x) given by (37) is a fourth-order function and its Hessian also must be
equal to zero at the minimum point. Then the necessary condition for its minimum point is that the
third derivative is equal to zero. Thus, near the minimum point, the vector u

(k)
2 can be determined

from the system

\partial 3fk4(u2)

\partial u32
= Pkf

(3)(x(k))
\bigl[ 
(u2)

2
\bigr] 
+ Pkf

(4)(x(k))
\bigl[ 
(u2)

3
\bigr] 
= 0. (39)

Theorem 2.3. Suppose that f(x) has a local minimum at the point x\ast \in \BbbR n. Let f(x) be 4
times continuously differentiable in the neighborhood V (x\ast ) of x\ast . Let the matrix f (2)(x\ast ) be equal
to the zero matrix and, for all u \in \BbbR n, condition (35) is satisfied for p = 4. Then the fourth-order
method given by (21) and (38) converges in a neighborhood of x\ast and the rate of convergence is 4/3.

Proof. Recall that the vector u
(k)
2 is found as the minimum point of the function fk4(x) given

by (37) and, taking ak = 1 in (21), it is clear that x(k+1)  - x(k) = u
(k)
2 and f

(1)
k4 (x(k+1)) = 0.

Therefore, \bigl( 
f (1)(x(k+1))

\bigr) T
(x(k+1)  - x\ast ) =

\bigl( 
f (1)(x(k+1)) - f

(1)
k4 (x(k+1))

\bigr) T
v(k+1),

where v(k+1) = x(k+1)  - x\ast . Thus,\bigl( 
f (1)(x(k+1))

\bigr) T
(x(k+1)  - x\ast ) \leq 

\bigm\| \bigm\| \bigm\| f (1)(x(k+1)) - f
(1)
k4 (x(k+1))

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| v(k+1)
\bigm\| \bigm\| .

However by using (38), we get

f (1)(x(k+1)) - f
(1)
k4 (x(k+1)) = O

\bigl( \bigm\| \bigm\| u(k)2

\bigm\| \bigm\| 4\bigr) .
Then there is a constant M > 0 such that\bigm\| \bigm\| \bigm\| f (1)(x(k+1)) - f

(1)
k4 (x(k+1))

\bigm\| \bigm\| \bigm\| \leq M
\bigm\| \bigm\| \bigm\| u(k)2

\bigm\| \bigm\| \bigm\| 4,
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and, therefore, \bigl( 
f (1)(x(k+1))

\bigr) T
(x(k+1)  - x\ast ) \leq M

\bigm\| \bigm\| \bigm\| u(k)2

\bigm\| \bigm\| \bigm\| 4\bigm\| \bigm\| v(k+1)
\bigm\| \bigm\| .

Using the inequality (36) yields

m1\| Pv(k+1)\| 4 \leq 
\bigl( 
f (1)(x(k+1))

\bigr) T
(x(k+1)  - x\ast ) \leq M

\bigm\| \bigm\| \bigm\| u(k)2

\bigm\| \bigm\| \bigm\| 4\bigm\| \bigm\| v(k+1)
\bigm\| \bigm\| 

or

\| Pv(k+1)\| 4

\| v(k+1)\| 
=

\bigm\| \bigm\| v(k+1)
\bigm\| \bigm\| 3 \leq M

m1

\bigm\| \bigm\| \bigm\| u(k)2

\bigm\| \bigm\| \bigm\| 4. (40)

The vector u(k)2 is determined from the system of equations (39) multiplying both sides of this system
by the vector u2. This results in the following equation for u2 :

f (4)(x(k))[(u2)
4] =  - f (3)(x(k))

\bigl[ 
(u2)

3
\bigr] 
.

Then, from condition (35) with p = 4 and the continuity of the 4th derivative of the function f(x)

on a sufficiently small neighborhood of the minimum point, it follows that

m4

2
\| u2\| 4 =

m4

2
\| Pu2\| 4 \leq f (4)(x(k))[(u2)

4] \leq | f (3)(x(k))
\bigl[ 
(u2)

3
\bigr] 
| \leq 

\bigm\| \bigm\| f (3)(x(k))
\bigm\| \bigm\| \| u2\| 3.

From which the following estimate is derived\bigm\| \bigm\| u(k)2

\bigm\| \bigm\| \leq 2/m4

\bigm\| \bigm\| f (3)(x(k))
\bigm\| \bigm\| . (41)

Finally, expanding in the Taylor series, and using the condition (25) with p = 4 (which is a
necessary condition for a minimum [24], from the continuity of the 4th derivative of f(x) in a
neighborhood of the minimum point it is deduced that there exists a constant M4 > 0 such that\bigm\| \bigm\| f (3)(x(k))

\bigm\| \bigm\| =
\bigm\| \bigm\| f (3)(x\ast ) + f (4)(x\ast )v(k) +O

\bigl( \bigm\| \bigm\| v(k)\bigm\| \bigm\| 2\bigr) \bigm\| \bigm\| \leq M4

\bigm\| \bigm\| v(k)\bigm\| \bigm\| . (42)

Then (40) – (42) give

\| v(k+1)\| 3 \leq M

m1

\bigm\| \bigm\| \bigm\| u(k)2

\bigm\| \bigm\| \bigm\| 4 \leq M

m1

\bigl( 
1/m4

\bigm\| \bigm\| f (3)(x(k))
\bigm\| \bigm\| \bigr) 4 \leq 16M(M4)

4

m1(m4)4
\bigm\| \bigm\| v(k)\bigm\| \bigm\| 4,

from which follows

\| v(k+1)\| \leq 
\biggl( 
16M(M4)

4

m1(m4)4

\biggr) 1/3\bigm\| \bigm\| v(k)\bigm\| \bigm\| 4/3.
The theorem is proved.
Now it is possible to analyze the convergence rate of the combined second-order methods given

by (2), (8) and (9). For ease of analysis, consider the approach used above.
The combined second-order method described by (2), (8) and (9) is a combination of the Newton’s

method and the gradient method. At each kth iteration, the entire space \BbbR n is represented as the
direct sum of two subspaces \mathrm{K}\mathrm{e}\mathrm{r} (Hk\varepsilon ) and the orthogonal complement of it. The gradient method is
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applied to the subspace \mathrm{K}\mathrm{e}\mathrm{r} (Hk\varepsilon ), and Newton’s method is applied to the orthogonal complement
of it. The convergence rate of the combined method is determined by the convergence rate of the
slowest of the original two methods. Now let us analyze the method defined by (2), (8) and (9) in
the case of the matrix f (2)(x\ast ) that is equal to the zero matrix. In this case, the method becomes
the gradient method, wherein it is considered \alpha k2 = \rho > 0 (the gradient method with a fixed step).
Therefore, the method given by (2), (8) and (9) takes the form

x(k+1) = x(k) + \rho u
(k)
2 , k = 0, 1, 2, . . . , (43)

where u
(k)
2 =  - 1

\varepsilon 
g(k), x(k+1)  - x(k) = \rho u

(k)
2 .

Theorem 2.4. Suppose that function f(x) has a minimum at the point x\ast \in \BbbR n. Let f(x) be
4 times continuously differentiable in the neighborhood V (x\ast ) of x\ast , the matrix f (2)(x\ast ) is equal
to the zero matrix, and, for all u \in \BbbR n, the condition (35) is satisfied. Then the gradient method
with a fixed step given by (43) converges in a neighborhood of x\ast and the rate of convergence is
sublinear [2].

Proof. Formula (43) gives v(k+1) = v(k)  - \rho 

\varepsilon 
g(k), where v(k+1) = x(k+1)  - x\ast . Then

\| v(k+1)\| 2 = \| v(k)  - \rho 

\varepsilon 
g(k)\| 2 = \| v(k)\| 2  - 2

\rho 

\varepsilon 
(g(k))T v(k) +

\Bigl( \rho 
\varepsilon 

\Bigr) 2
\| g(k)\| 2. (44)

Using the inequality (36) with p = 4 yields

(g(k))T v(k) \geq m1\| v(k)\| 4. (45)

By the Taylor expansion, using the continuity of the 4th derivative of f(x) in a neighborhood of the
minimum point, it is derived that there exists a constant M4 > 0 such that

\| f (1)(x(k))\| =

\bigm\| \bigm\| \bigm\| \bigm\| f (1)(x\ast )+ f (2)(x\ast )v(k) +
1

2
f (3)(x\ast )(v(k))2 +

1

6
f (4)(x\ast )(v(k))3 +O

\bigl( \bigm\| \bigm\| v(k)\bigm\| \bigm\| 4\bigr) \bigm\| \bigm\| \bigm\| \bigm\| 
\leq M4

\bigm\| \bigm\| v(k)\bigm\| \bigm\| 3. (46)

Therefore, from (44) – (46) it is straightforward that

\| v(k+1)\| 2 \leq \| v(k)\| 2  - 2
\rho 

\varepsilon 
m1\| v(k)\| 4 +

\Bigl( \rho 
\varepsilon 

\Bigr) 2
(M4)

2\| v(k)\| 6

\leq 
\biggl( 
1 - 2

\rho 

\varepsilon 
m1\| v(k)\| 2 +

\Bigl( \rho 
\varepsilon 

\Bigr) 2
(M4)

2\| v(k)\| 4
\biggr) 
\| v(k)\| 2.

Then, for a sufficiently small neighborhood of the minimum point, the following estimate is obtained:

\| v(k+1)\| 2 \leq 
\Bigl( 
1 - \rho 

\varepsilon 
m1\| v(k)\| 2

\Bigr) 
\| v(k)\| 2

or

\| v(k+1)\| \leq 
\Bigl( 
1 - \rho 

\varepsilon 
m1\| v(k)\| 2

\Bigr) 1
2 \| v(k)\| .

Thus, the convergence rate of the method defined by (43) is sublinear
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3. A Quasi-Newton version of the methods. In practice, calculation of the Hessian matrix at each
iteration can be overly time consuming. Consequently, it seems logic al to consider the quasi-Newton
versions of both the combined second-order method given by (2), (8), (9) and the combined fourth-
order method given by (21), (13), (14). To this end, the matrix Hk, used in (3), is updated according
to the Broyden – Fletcher – Goldfarb – Shanno formula (BFGS) [2]. Numerical experiments show
that as x(k) approaches a degenerate minimum point, which, in the case of these combined methods,
means that the parameter value rk < n, it is preferable to periodically recalculate the matrix Hk as
Hk = f (2)(x\ast ). Otherwise, the number of iterations essentially increases. Apparently, this happens
because the representation of the entire space as the direct sum of two subspaces is inaccurate due to
the large error in computing of the Hessian matrix approximation.

4. Adaptive combined quasi-Newton-type method (ACQNM). Let us consider the adaptive
combined method (ACQNM), which makes use of the above methods and is a quasi-Newton method.
When the rank of the Hessian degeneracy is equal to one, ACQNM coincides with the fourth-order
method defined by (21), (13) and (14). If the rank of the Hessian degeneracy is more than one, then
ACQNM coincides with the second-order method defined by (2), (8) and (9). In ACQNM, the matrix
Hk used in (3), is recalculated according to the BFGS formula [3] at each iteration. The step sizes in
the formula (2) are determined by the algorithms described above.

The efficiency of ACQNM is supported by the numerical experiments that were carried out on
generally accepted test functions for unconstrained optimization problems [1]. ACQNM was tested
using R, Scilab, and Python. The results of the numerical experiments are presented below.

Algorithm 4 . Adaptive combined quasi-Newton-type method (ACQNM)

Input: Initial point x(0); regularization parameter \varepsilon > 0; algorithm one-dimensional minimization
OneDimMin (which is given in Subsection 2.3); algorithm of spectral decomposition of a matrix eigen
(which is a standard function in R); step of numerical differentiation h; maximum number of iterations
K; accuracy by the gradient \mathrm{t}\mathrm{o}\mathrm{o}\mathrm{l}_\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d} > 0; accuracy by the argument \mathrm{t}\mathrm{o}\mathrm{o}\mathrm{l}_\mathrm{a}\mathrm{r}\mathrm{g} > 0 accuracy by
the function \mathrm{t}\mathrm{o}\mathrm{o}\mathrm{l}_\mathrm{f}\mathrm{u}\mathrm{n} > 0.

1: initialization: k = 0; f0 = f(x(0)); g(0) = f (1)(x(0)); H0 = I;

2: while \| g(k)\| > \mathrm{t}\mathrm{o}\mathrm{o}\mathrm{l}_\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d} :

3: (\Lambda k, Qk) = eigen (Hk, symmetric = TRUE), \Lambda k = \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g} (\lambda 
(k)
1 , . . . , \lambda 

(k)
n ), \lambda 

(k)
i \geq \lambda 

(k)
i+1;

4: initialization: rk = 0;

5: for i = 0, . . . , n :

6: if | \lambda (k)
i | > \varepsilon then rk = rk + 1;

7: if \lambda 
(k)
i <  - \varepsilon then \lambda 

(k)
i =  - \lambda 

(k)
i ;

8: if rk = n then
9: u(k) =  - Qk\Lambda 

 - 1
k QT

k g
(k), u

(k)
2 = 0.

10: ak is determined as a minimum point of the function of one variable \varphi 1(\alpha ) = f(x(k)+\alpha u(k))

with the initial approximation \alpha 0 = 1

11: [ak, x
(k+1), fk+1] = OneDimMin(x(k), fk, u(k), 1);

12: else

13: Qk =
\bigl[ 
Qk1 Qk2

\bigr] 
,\Lambda k =

\biggl[ 
\Lambda k1 0

0 \Lambda k2

\biggr] 
14: if rk < n - 1 then
15: u

(k)
1 =  - Qk1\Lambda 

 - 1
k1 Q

T
k1g

(k);
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16: u
(k)
2 =  - \varepsilon  - 1Qk2Q

T
k2g

(k).

17: ak1 is determined as a minimum point of the function of one variable \varphi 1(\alpha ) = f(x(k) +

\alpha u
(k)
1 ) with the initial approximation \alpha 0 = 1

[\alpha k1, \^x
(k+1), \^fk+1] = OneDimMin(x(k), fk, u

(k)
1 , 1), where \^x(k+1) = x(k)+\alpha k1u

(k)
1 , \^fk+1 =

f(\^x(k+1));

18: ak2 is determined as a minimum point of the function of one variable \varphi 2(\alpha ) = f(x(k) +

\alpha k1u
(k)
1 + \alpha u

(k)
2 ) with the initial approximation \alpha 0 = \mathrm{m}\mathrm{a}\mathrm{x} (1, a(k - 1),2);

19: [\alpha k2, x
(k+1), fk+1] = OneDimMin(\^x(k+1), \^fk+1, u

(k)
2 ,\mathrm{m}\mathrm{a}\mathrm{x} (1, a(k - 1),2));

20: else

21: calculate y(k) \approx 
f (1)(x(k) + hq

(n)
k ) - 2f (1)(x(k)) + f (1)(x(k)  - hq

(n)
k )

h2
;

22: \mu is determined as a solution of the equation (16);
23: u

(k)
2 = \mu sq

(n)
k , where s = \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n} ((g(k))T q

(n)
k );

24: u
(k)
1 =  - Qk1\Lambda 

 - 1
k1 Q

T
k1(g

(k) + \mu 2

2 y(k));

25: u(k) = u
(k)
1 + u

(k)
2 ;

26: ak is determined as a minimum point of the function of one variable \varphi 3(\alpha ) = f(x(k) +

\alpha u(k)) with the initial approximation \alpha 0 = 1;

[\alpha k, x
(k+1), fk+1] = OneDimMin(x(k), fk, u(k), 1);

27: if \| x(k+1)  - x(k)\| /(1 + \| x(k+1)\| ) \leq \mathrm{t}\mathrm{o}\mathrm{o}\mathrm{l}_\mathrm{a}\mathrm{r}\mathrm{g} then break with code=1;

28: if | fk+1  - fk| /(1 + | fk+1| ) \leq \mathrm{t}\mathrm{o}\mathrm{o}\mathrm{l}_\mathrm{f}\mathrm{u}\mathrm{n} then break with code = 2;

29: x(k) = x(k+1) : fk = fk+1; k = k + 1; g(k) = f (1)(x(k));

30: if \| g(k)\| \leq \mathrm{t}\mathrm{o}\mathrm{o}\mathrm{l}_\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d} then break with code=0;

31: if k > K then break with code = 3;

32: Hk is updated according to the BFGS formula;

Output: last x(k), fk, g(k), k.

5. Results of the numerical experiments. ACQNM for solving the degenerate problem (1) was
implemented in R. To guarantee the stability of the method, the negative diagonal elements \lambda k

i of
the matrix \Lambda k given by (3) were replaced by  - \lambda k

i . The matrix Hk, used in (3), is updated according
to the BFGS formula with the initial approximation H0 = I. The regularization parameter of the
numerical method \varepsilon was taken equal to 10 - 7\times \mathrm{m}\mathrm{a}\mathrm{x}i=1,...,n(| \lambda k

i | ). Note that the matrix Hk is thought
to be close to degenerate if its condition number \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}(Hk) is greater than 107. The derivatives
gk = f \prime (xk) were calculated numerically by the symmetric formula

\partial f(x)

\partial xi
\approx f(x| xi + hi) - f(x| xi  - hi)

2hi
(47)

with a step of numerical differentiation hi = h0\mathrm{m}\mathrm{a}\mathrm{x}(1, | xi| ), where h0 = 10 - 6.

ACQNM was tested on the following test functions for unconstrained optimization problems [1].

1. Extended Rosenbrock function: f(x) =
\sum n/2

i=1

\bigl[ 
100(x2i  - x22i - 1)

2 + (1 - x2i - 1)
2
\bigr] 
, where

the initial estimate is x0 = ( - 1.2, 1, . . . , - 1.2, 1)T , the minimum point is x\ast = (1, 1, . . . , 1)T ,

the value of the objective function at the minimum point is f(x\ast ) = 0, \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k} (f \prime \prime (x\ast ) = n, and
\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d} (f \prime \prime (x\ast )) = 2508.01.
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2. Extended White & Holst function: f(x) =
\sum n/2

i=1

\Bigl[ 
100

\bigl( 
x2i  - x32i - 1

\bigr) 2
+ (1 - x2i - 1)

2
\Bigr] 
, the

initial estimate is x0 = ( - 1.2, 1, . . . , - 1.2, 1)T , the minimum point is x\ast = (1, 1, . . . , 1)T , the value
of the objective function at the minimum point is f(x\ast ) = 0), \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(f \prime \prime (x\ast )) = n, \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}(f \prime \prime (x\ast )) =

10018.01.

3. Extended Wood function: f(x) =
\sum n/4

i=1
[100(x24i - 3  - x4i - 2)

2 + (x4i - 3  - 1)2 + 90(x24i - 1  - 
x4i)

2 + (1  - x4i - 1)
2 + 10.1((x4i - 2  - 1)2 + (x4i  - 1)2) + 19.8(x4i - 2  - 1)(x4i  - 1)], where the

initial estimate is x0 = ( - 3, - 1, - 3, - 1, . . . , - 3, - 1, - 3, - 1)T , the minimum point is x\ast =

(1, 1, 1, 1, . . . , 1, 1, 1, 1)T , the value of the objective function at the minimum point is f(x\ast ) = 0,

\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k} (f \prime \prime (x\ast )) = n, \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d} (f \prime \prime (x\ast )) = 1397.957.

4. Extended Powell function: f(x) =
\sum n/4

i=1
[(x4i - 3 + 10x4i - 2)

2 + 5(x4i - 1  - x4i)
2 + (x4i - 2  - 

2x4i - 1)
4 + 10(x4i - 3  - x4i)

4], where the initial estimate is x0 = (3, - 1, 0, 1, . . . , 3, - 1, 0, 1)T , the
minimum point is x\ast = (0, 0, 0, . . . , 0, 0, 0)T , the value of the objective function at the minimum

point is f(x\ast ) = 0, \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k} (f \prime \prime (x\ast )) =
n

2
.

5. Extended Freudenstein & Roth function: f(x) =
\sum n/2

i=1
( - 13 + x2i - 1 + ((5  - x2i)x2i  - 

2)x2i)
2 + ( - 29 + x2i - 1 + ((x2i + 1)x2i  - 14)x2i)

2, the initial estimate of the minimum is x0 =

(0.5, - 2, . . . , 0.5, - 2)T , the minimum point of the objective function is x\ast = (11.4127790,

 - 0.8968053, . . . , 11.4127790, - 0.8968053)T , the value of the objective function at the minimum

point is f(x\ast ) =

\Biggl\{ 
97.96851 if n = 4,

293.9055 if n = 12,
\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k} (f \prime \prime (x\ast )) = n, \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d} (f \prime \prime (x\ast )) = 1102.78.

6. Extended Tridiagonal 1 function: f(x) =
\sum n/2

i=1
[(x2i - 1 + x2i  - 3)2 + (x2i - 1  - x2i + 1)4],

the initial estimate is x0 = (2, 2, . . . , 2)T , the minimum point is x\ast = (1, 2, . . . , 1, 2)T , the value of

the objective function at the minimum point is f(x\ast ) = 0, \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k} (f \prime \prime (x\ast )) =
n

2
.

7. FLETCHCR function (CUTE): f(x) =
\sum n - 1

i=1
100(xi+1 - xi+1 - x2i )

2, the initial estimate

is x0 = (0, 0, . . . , 0), and the minimum point is not strict (therefore, it is not unique). The value of
the objective function at the minimum point is f(x\ast ) = 0, \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}f \prime \prime (x\ast ) = n - 1.

8. My function1: f(x) = 1000(x1  - 1000)2 + 0.001x42 +
\sum n

i=3
(xi  - i)2, the initial estimate

is x0 = (100, . . . , 100), the minimum point is x\ast = (1000, 0, 3, 4, . . . , n), the value of the objective
function at the minimum point is f(x\ast ) = 0, \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k} (f \prime \prime (x\ast )) = n - 1.

9. My function2: f(x) = x21+x1x
2
2+x42+

\sum n

i=3
x2i , the initial estimate is x0 = (10, 14, 10, . . . ,

10), the minimum point is x\ast = (0, 0, . . . , 0, 0), the value of the objective function at the minimum
point is f(x\ast ) = 0, \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k} (f \prime \prime (x\ast )) = n - 1.

10. Mean-square approximation by polynomials: f(x) =
\sum 101

j=1

\Bigl[ \sum n

i=1
xi \cdot 0.01(j - 1)i - 1 - \sum n

i=1
x\ast i \cdot 0.01(j  - 1)i - 1

\Bigr] 2
, where n = 5. The initial estimate is x0 = (2, 2, 2, 2, 2), the minimum

point is x\ast = (1, 1, 1, 1, 1), and the value of the objective function at the minimum point is f(x\ast ) = 0,

\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}f \prime \prime (x\ast ) = n - 1.

Note that the functions 4, 6 – 10 are characterized by the Hessian matrices f \prime \prime (x\ast ) that are poorly
conditioned. The functions 7 – 10 have the Hessian matrices with a degeneracy rank that is equal to
1. The numerical experiments for the functions 1 – 9 were carried out for n = 4 and n = 100.
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It is interesting to compare ACQNM with the following standard computational tools: the optim
function (method L-BFGS-B) of the mathematical package in R 4.3.2, the minimize (method BFGS)
function of the mathematical package in Python (scipy.optimize version: 1.11.3), and the optim
function (method ’Quasi-Newton with BFGS’ of the numerical computational package Scilab 6.1.1.
The calculations were performed with maximum precision. The results of the numerical experiments
are presented in Tables 1 – 4, where the following variables are defined:

Funct indicates which function is under test;
n is a value of the parameter n;
n-r is the rank of Hessian degeneracy at the minimum point;
Dx = \| \widetilde x - x\ast \| is the Euclidean norm of the difference \widetilde x - x\ast , where \widetilde x is the approximation of

the solution obtained by the optimization procedure;
Df = | f(\~x) - f(x\ast )| ;
Nitr is the number of iterations performed;
Nf is the number of calculations of the objective function performed;
Ngr is the number of calculations of the gradient of the objective function performed;
NormGr = \| f \prime (\~x)\| ;
code, message, or exitflag are exit codes returned by the optimization procedure;
For ACQNM, the parameter Nf does not account for the number of the evaluations of the objective

function needed for numerical computation of the objective function gradient by the formula (47).
For ACQNM, the exit code takes the following values:
0 – required accuracy by the gradient is reached (10 - 20 was given);
1 – required accuracy by the argument is reached (10 - 10 was given);
2 – required accuracy by the function is reached (10 - 25 was given).

For the optim function (package R), the exit code message takes the following values:
1 – ERROR: ABNORMAL_TERMINATION_IN_LNSRCH;
2 – CONVERGENCE: REL_REDUCTION_OF_F \leq FACTR*EPSMCH;
3 – NEW_X.

For the minimize function (package Python), the exit code takes the following values:
1 – Desired error not necessarily achieved due to precision loss;
2 – Optimization terminated successfully.

For the optim function (package Scilab), the exit code err takes the following values:
1 – Norm of projected gradient is lower than . . . ;
4 – Optim stops: maximum number of calls to f is reached;
5 – Optim stops: maximum number of iterations is reached;
9 – End of optimization, successful completion.

Tables 1 and 3 show the calculation results for the optim function of the mathematical package in
R and the minimize function of the mathematical package in Python for n = 4 and n = 100. Tables 2
and 4 show the calculation results for the optim function (Quasi-Newton with BFGS’ method) of the
mathematical package Scilab and the ACQNM function for n = 4 and n = 100.

As Tables 1 – 4 show, the optim (L-BFGS-B) function in R and the minimize (BFGS) function
of the Python scipy.optimize package both perform worse than the optim function of the Scilab math
package in terms of accuracy and number of calculations of the objective function. At the same time,
the optim procedure of the Scilab math package shows worse results than ACQNM in terms of
accuracy and number of calculations of the objective function.
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Table 1. Calculation results for the optim function in R and the minimize function in Python for
n = 4

F
un

ct R optim (L-BFGS-B) Python minimize (BFGS)
n n-r Dx Df Nitr Nf Ngr NormGr Code Dx Df Nitr Nf Ngr NormGr Code

1 4 0 6.3e-04 8.0e-08 91 91 5.6e-04 1 1.4e-05 4.0e-11 58 542 106 4.1e-07 1
2 4 0 3.8e-03 1.5e-06 109 109 7.9e-04 1 4.0e-05 1.6e-10 79 697 137 2.8e-07 1
3 4 0 8.0e-06 4.4e-10 154 154 3.9e-04 2 4.3e-07 5.7e-13 89 652 128 3.2e-10 1
4 4 2 5.1e-05 6.7e-18 135 135 1.2e-10 1 1.2e-03 5.2e-11 48 457 89 8.9e-07 1
5 4 0 1.8e-05 1.7e-10 91 91 2.6e-04 2 3.9e-07 2.8e-14 21 190 38 9.7e-06 1
6 4 2 1.0e-05 3.9e-19 51 51 1.7e-09 2 4.8e-07 1.1e-16 54 670 132 1.2e-15 1
7 4 1 2.0e-10 51 51 5.2e-04 1 3.9e-13 12 292 56 1.8e-05 1
8 4 1 4.6e-05 1.2e-20 84 84 3.4e-09 2 1.2e-06 5.5e-14 69 390 78 6.8e-216 2
9 4 1 2.1e-05 1.5E-19 130 130 2.2e-12 2 7.0e-05 1.8e-16 50 442 86 1.2e-11 1
10 5 1 2.2e-12 2.0e-25 88 88 2.9e-12 2 3.0e-07 9.1e-15 13 2270 43 2.4e-11 1

Table 2. Calculation results for the optim function of the mathematical package Scilab and the
ACQNM function for n = 4

Fu
nc

t Scilab optim (quasi-Newton with BFGS) ACQNM
n n-r Dx Df Nitr Nf Ngr NormGr Err Dx Df Nitr Nf Ngr NormGr Code

1 4 0 2.3e-08 1.1e-16 50 89 4.0e-14 9 2.1e-13 9.9e-27 22 115 23 1.1e-12 1
2 4 0 1.0e-07 2.1e-15 49 172 4.8e-14 9 6.0e-13 6.4e-26 33 157 34 1.1e-11 1
3 4 0 7.0e-10 1.6e-18 81 180 3.9e-14 9 5.3e-15 4.1e-29 51 212 52 2.4e-13 1
4 4 2 1.2e-10 3.2e-40 93 175 2.1e-29 1 1.2e-06 2.7e-24 39 262 48 5.0e-16 1
5 4 0 4.2e-10 7.1e-14 27 158 3.1e-10 9 3.2e-08 5.7e-14 9 52 10 4.7e-07 2
6 4 2 4.0e-07 3.1e-26 62 377 3.0e-16 9 2.8e-06 1.2e-22 19 84 26 4.7e-12 1
7 4 1 7.1e-20 25 206 3.6e-09 9 5.5e-30 10 51 11 1.5e-13 1
8 4 1 9.1e-08 4.3e-32 90 179 4.4e-16 9 9.1e-07 1.4e-26 21 125 48 2.4e-13 2
9 4 1 1.1e-21 1.3e-84 213 229 3.2e-43 1 2.1e-07 7.7e-27 37 160 58 1.6e-13 2
10 5 1 1.5e-13 2.5e-28 14 42 9.0e-15 9 7.3e-11 2.5e-24 7 55 8 1.7e-11 1

Table 3. Calculation results for the optim function in R and the minimize function in Python for
n = 100

Fu
nc

t R optim (L-BFGS-B) Python minimize (BFGS)
n n-r Dx Df Nitr Nf Ngr NormGr Code Dx Df Nitr Nf Ngr NormGr Code

1 100 0 0.002 8.4e-07 114 114 0.003 1 7.4e-05 1.1e-09 473 56066 555 1.1e-05 1
2 100 0 0.02 3.6e-05 122 122 0.01 1 2.1e-04 4.8e-09 712 87882 870 9.3e-05 1
3 100 0 7.2e-04 2.1e-07 257 257 0.002 1 2.6e-06 1.5e-11 789 89294 884 2.2e-06 1
4 100 50 3.5e-04 5.4e-16 705 705 1.3e-08 2 2.1e-02 38e-08 335 40816 404 1.5e-05 1
5 100 0 9.2e-05 4.3e-09 43 43 1.2e-03 2 7.3e-03 2.2e-09 181 27068 268 2.3e-04 1
6 100 50 2.2e-10 8.4e-29 47 47 2.7e-14 2 5.3e-05 2.8e-15 82 12634 125 2.9e-13 1
7 100 1 4.3e-08 1400 1400 2.8e-03 1 89.09 419 48592 481 1.4e-05 1
8 100 1 2.7e-09 7.3e-27 101 101 1.7e-13 2 1.7e-04 6.1e-14 53 12029 119 2.6e-10 1
9 100 1 3.3e-10 9.2e-27 66 66 1.9e-13 2 7.0e-05 5.5e-15 52 8395 83 2.3e-13 1

Tables 2 and 4 show the results of the calculations for the optim function of the Scilab
mathematical package and ACQNM for n = 4 and n = 100. These results confirmed that ACQNM
allows one to obtain more accurate solution to the problem. In this case, ACQNM uses approximately
1.5 – 2 times fewer calculations of the objective function for n = 4 (Table 2) as well as for n = 100

(Table 4). But the main point is that for problems 7 – 9 (for n = 4 and n = 100) as well as problem
10 (for n = 5), which have one-dimensional kernel of the Hessian matrix, ACQNM performs
significantly fewer iterations, confirming its faster convergence rate.
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Table 4. Calculation results for the optim function of the mathematical package Scilab and the
ACQNM function for n = 100

Fu
nc

t Scilab optim (quasi-Newton with BFGS) ACQNM
n n-r Dx Df Nitr Nf Ngr NormGr Code Dx Df Nitr Nf Ngr NormGr Code

1 100 0 1.0e-07 2.7e-15 231 834 3.8e-12 9 4.1e-09 7.2e-18 72 492 73 8.8e-08 1
2 100 0 7.0e-07 5.4e-14 85 368 9.4e-13 9 1.2e-08 1.5e-17 228 992 229 2.9e-08 1
3 100 0 3.5e-09 4.0e-17 93 177 1.6e-12 9 1.1e-08 4.5e-17 454 1630 455 1.2e-08 1
4 100 50 3.4e-07 1.3e-23 501 679 2.2e-17 5 5.1e-05 7.0e-19 255 2153 300 3.1e-13 1
5 100 0 1.5e-08 5.7e-13 28 200 1.0e-07 9 2.4e-06 1.1e-11 16 106 17 1.2e-04 1
6 100 50 1.9e-06 1.2e-24 52 210 2.5e-13 9 8.5e-06 4.4e-22 29 114 46 7.4e-12 1
7 100 1 101.3 499 938 2.0e-07 9 50.8 199 675 200 6.4e-06 2
8 100 1 3.9e-07 1.5e-26 159 420 2.5e-13 9 3.3e-06 2.7e-25 30 148 67 7.9e-13 1
9 100 1 1.5e-21 6.9e-84 257 302 3.6e-42 1 2.2e-07 2.2e-27 43 174 70 4.3e-14 2

6. Conclusion. The second-order and the fourth-order numerical methods for solving degenerate
unconstrained optimization problems are considered in the paper using a new approach. Namely, the
entire space is represented as a sum of two orthogonal subspaces. This representation is based on
the spectral decomposition of the Hessian matrix. This approach is particularly interesting because it
allows using different methods on different subspaces. Moreover, any method can be applied to the
kernel of the Hessian matrix.

The convergence rate of each of these methods is analyzed using generalized necessary and
sufficient conditions for a minimum presented in [24]. However, for the sake of simplicity, the
approach that gives an estimation for the convergence rate in the worst possible case is used, and
thus, in practice, the convergence may be faster.

The proposed new adaptive combined quasi-Newton-type method (ACQNM), in fact, combines
three methods and makes use of each method if the situation requires it. This method, in many cases,
makes solving practical degenerate optimization problems more effective.

In view of the fact that the calculation of the spectral decomposition (3) of the matrix Hk at
each iteration of ACQNM can be very costly, one may use the decomposition described in [26]. The
decomposition from [26] of the symmetric matrices is less numerically stable then the decomposition
(3). Note that the decomposition from [26] may be used at the iterations of the method while the
matrix Hk is not close to a singular matrix.
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