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AI-BASED OPTIMIZATION OF PACKING PROBLEMS FOR 

ENHANCING MEDICAL SAFETY SYSTEMS  
 

Abstract. In the context of enhancing medical safety systems, AI-based optimization of packing solutions is 

crucial, particularly in the secure and sanitary storage of hazardous materials within healthcare environments. Ensuring 

that toxic, radioactive, or infectious substances are stored according to strict sanitary guidelines is vital for protecting 

public health and preventing contamination. This study introduces an AI-driven mathematical model to address packing 

problems, with a focus on meeting both technological and hygiene standards. By modeling the optimal placement of 

containers in a deployment area and incorporating key safety and sanitary restrictions, the problem is reduced to a 

nonlinear programming framework. The phi-function technique is utilized to capture geometric relationships 

effectively, enabling the development of AI-optimized, sanitary-compliant storage solutions. Numerical examples are 

provided to demonstrate the approach's efficacy.  

Keywords: AI-based optimization, medical safety, packing problem, safety clearance, deployment area, 

mathematical modelling, non-linear programming. 

 

Introduction   

In an era of rapid technological 

advancement, the development and 

deployment of safety systems are critical to 

ensuring the secure and efficient operation of 

various systems, particularly in healthcare 

environments [1]. These systems are essential 

for safeguarding both human life and 

infrastructure, playing a pivotal role in 

mitigating risks and preventing potentially 

catastrophic outcomes. Nowhere is this more 

evident than in medical institutions, where the 

failure of safety systems can have severe 

consequences, including the spread of 

infectious agents or exposure to toxic and 

radioactive materials [2]. 

In healthcare settings, safety systems 

must be meticulously designed not only to 

prevent accidents but also to mitigate the 

impact of any incidents. Modern systems, 

leveraging continuous monitoring and 

advanced AI-driven analytics, are capable of 

identifying potential risks in real time and 

triggering prompt response mechanisms. 

However, a critical aspect of medical safety 

often overlooked is the proper storage of 

hazardous substances, such as toxic, 

radioactive, or infectious materials, where 

both technological and sanitary compliance 

are necessary to prevent contamination and 

ensure swift response in emergencies [3]. 

Previous studies have highlighted the 

risks associated with incorrect placement and 

storage of hazardous materials in healthcare 

environments [4]. Safety considerations, such 

as determining safe distances, are often 

addressed too late in the project lifecycle, 

leading to inefficiencies and increased risk. 
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This paper seeks to address these challenges 

through an AI-based approach, offering 

optimization techniques that enhance medical 

safety by ensuring the strategic and sanitary-

compliant placement of hazardous materials 

in healthcare facilities. 

 

Recent Research and Publications 

The problem of finding the optimal 

placement of containers, considering given 

restrictions, can be formulated as a packing 

problem [5,6]. The theory of optimization 

geometric design is one of the tools for 

studying and optimizing complex technical 

systems to achieve their optimal functioning 

state. It is designed to solve a number of 

applied optimization problems of placing 

geometric objects. These problems are 

associated with the creation of energy- and 

resource-saving technologies in priority 

sectors of the national economy (energy, 

machine-, ship-, aircraft-building, 

construction, chemical industry, as well as in 

scientific research in the field of 

nanotechnologies, in modern tasks of biology, 

mineralogy, medicine, materials science, in 

robotics, tasks of coding information, systems 

of image recognition, control systems of 

spacecraft) during the automation and 

modeling of the processes of placing various 

objects [7,8]. 

Several heuristic approaches have been 

developed to address the problem of 

arranging equal-sized circles within a circular 

container [9,10]. This problem, like many 

packing problems, involves finding the most 

efficient arrangement of a fixed set of objects 

to minimize the overall dimensions of the 

container. A range of studies has approached 

this issue through nonlinear models and 

optimization techniques. In particular, 

numerous nonlinear programming models 

have been explored for minimizing the 

dimensions of containers in 2D packing 

problems, which often involve various shapes, 

such as squares, rectangles, triangles, and 

circles. 

The goal of this research is to develop a 

precise mathematical model for optimizing 

placement of containers in a deployment area 

and to devise efficient methods for solving 

this problem. This paper introduces an 

intelligent system designed to determine the 

optimal arrangement of containers within a 

storage area. By framing the problem as one 

of optimizing the placement of congruent 

circles in a multiconnected domain, while 

adhering to safety clearance, we address a 

critical challenge in the fields of medical 

safety. 

The system employs advanced 

mathematical techniques, particularly the phi-

function method, to accurately describe the 

geometric relationships between containers. 

This method simplifies the problem by 

transforming it into a nonlinear programming 

model. 

By integrating these mathematical 

models and algorithms, the intelligent system 

provides a robust solution for ensuring both 

safe and efficient storage. Its key features and 

benefits are highlighted, underscoring its 

potential to improve safety protocols and 

enhance storage efficiency across a wide 

range of facilities. Moreover, the system is 

particularly relevant to healthcare 

environments, where its AI-based 

optimization capabilities can significantly 

enhance medical safety systems by ensuring 

that hazardous materials are stored securely 

and in compliance with sanitary guidelines. 

 

Problem formulation 

The primary aim of optimization 

packing problem can be described as follows: 

to search for a spatial arrangement of a given 

set of geometric objects within a deployment 

area that satisfies safety clearance, while 

maximizing or minimizing a specific 

optimization goal. 

To address the problem in relation to 

safety systems within the framework of 

placement problem, it is essential to define 

key elements of the system, such as: 

- the shape and boundaries of the 

deployment area; 

- the geometry of the objects to be placed 

in this area; 

- the technological and safety constraints 

governing the arrangement of these objects 

within the designated space; 

- the optimization objective. 

The area may have a complex shape, 

with certain regions being off-limits for 
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container placement due to safety or other 

prohibitive factors: 

0

1

( \ )l

l

D cl D P


=

= .                 

To mathematically model the problem, 

the outer boundary of the region is presented 

as a combination of segments and circular 

arcs. 

Each restricted area (where objects 

cannot be placed) is defined as a convex 

polygon given with vertices 

{1,2,..., }q I  = . In cases where the 

prohibited area is non-convex, it can be 

expressed as a finite union of geometric 

shapes such as circles and convex polygons. 

This allows for a more flexible representation 

of arbitrary shaped restricted zones within the 

deployment area, ensuring that all constraints 

related to safety or other restrictions are 

properly accounted for in the model. 

The outlined approach for defining the 

area allows for an accurate approximation of 

any given shape. Let’s assume a set of N 

cylindrical containers iK , Ni I , with nuclear 

power plants and a site for their storage are 

given. An important feature of the problem is 

all containers being congruent. The containers 

should be located only on one level 

(placement of containers one above the other 

is not allowed).  

The described method for defining the 

area enables a precise approximation of any 

shape. Let’s consider a scenario where we 

have cylindrical containers iK , 1,2,...,i N= , 

along with a designated storage site. A key 

aspect of this problem is that all containers 

are identical in size and shape. These 

containers must be placed on a single level, as 

stacking them on top of each other is not 

permitted. 

The method outlined for defining the 

area PPP allows for the approximation of any 

arbitrary shape with sufficient accuracy. 

Spatial form of the objects to be placed: 

Consider a set of cylindrical containers, 

iK , Ni I , which serve as storage units for 

hazardous. A key characteristic of this 

problem is that all the containers are 

congruent, meaning they are uniform in shape 

and size. Additionally, the placement of these 

containers must be on a single level, with no 

stacking allowed, ensuring that the 

arrangement adheres to both technological 

and safety regulations crucial for preventing 

accidents in medical and other sensitive 

environments. 

Given these specified features, the set of 

cylindrical containers can be modeled as a set 

of congruent cylinders iK , Ni I , 

represented as a set of congruent circles iС  

with radii r , Ni I . Let ( , )i i iu x y= be   the 

center of circle iC . Packing of all iC , Ni I , 

in 2
R  can be determined using the vector 

2

1 2( , ,..., ) N

Nu u u u R=  . The circle iC  

translated by ( , )i i iu x y=  is denoted as 

( )i iC u . 

The safety constraints for positioning a 

specific set of objects within the designated 

area can be categorized into two main types. 

The first type of constraints is essential 

for maintaining necessary safety standards, 

particularly concerning the overall levels of 

contamination and compliance with the 

thermal storage requirements for hazardous 

materials. To formalize these conditions for 

container placement, we must evaluate the 

impact of each container on the site's thermal 

environment and contamination levels. Each 

container is characterized by its physical 

properties (such as temperature and potential 

for leakage), which must be considered to 

ensure safe storage conditions. Consequently, 

we assign an integral indicator that reflects 

the thermal and safety properties of the 

materials contained in each circle. This 

parameter will quantify the cumulative effect 

of each container on the temperatures of 

nearby containers while also influencing the 

overall thermal conditions and safety levels 

within the area. 

We assume that the values of the 

integral coefficients ik  are determined by 

expert judgment ik  Then, according to the 

values of ik , Ni I , we distribute the circles 

iС , Ni I , into groups  ,jG .gj I  Let each 

group consist of iq , gi I , circles, where g  

is the number of groups obtained. 

In order to minimize the mutual 

influence of ionizing radiation and the 
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temperature regime of the containers, we set 

the minimum permissible distances 
g

ijd , , gi j I , between the circles of each 

group iG , gi I , and between the circles 

within one group.  

Thus, taking into account the first type 

of technological constraints will ensure an 

increase in fuel temperatures and the level of 

ionizing radiation from containers with spent 

nuclear fuel, and ensure a uniform distribution 

of ionizing radiation within the site when 

storing spent fuel on it. 

The second type of constraints is 

conditioned by ensuring the conditions for 

servicing the containers. It is necessary to 

provide the possibility of approaching each 

container with special service equipment in 

order to rotate the container or move the 

container within the site. 

To ensure this condition, it is necessary 

to consider the placement on the site of the 

so-called “service network” for moving 

equipment. Let’s assume that for moving 

equipment, it is necessary to ensure the 

presence of lanes with a width of d . Then, 

when placing objects, it is necessary to ensure 

the condition of touching iC , Ni I , with a 

lane of a given width d , which will ensure 

the approach of special service equipment to 

the container.  

The criterion for optimizing the 

placement of objects. As a criterion for 

optimization, we will choose to find the 

maximum filling of the selected site with 

circles iС  from the set NI .   

Thus, after formalizing all the 

conditions of the optimization problem of 

geometric design in an analytical form, we 

will formulate the problem statement as 

follows.  

We assume that the values of the 

integral coefficients are established based on 

expert judgment. Following this, we 

categorize the circles into groups based on 

these values. Let each group contain circles, 

where ggg denotes the total number of groups 

formed. 

To reduce the mutual influence of 

contamination and the thermal conditions of 

the containers, we establish minimum 

allowable distances dmind_{min}dmin 

between the circles in each group ggg and 

among the circles within the same group. By 

incorporating these safety constraints, we aim 

to control temperature increases and 

contamination levels from containers holding 

hazardous materials, thereby promoting a 

uniform distribution of safety parameters 

across the storage site. 

The second type of constraints relates to 

ensuring that servicing conditions for the 

containers are met. It is essential to allow 

access to each container with specialized 

service equipment for the purposes of rotating 

or moving the containers within the site. To 

facilitate this, we must design a "service 

network" for the movement of equipment. 

Assuming that specific lanes of width www 

are necessary for this equipment, it is critical 

that the circles interact with the lanes of the 

designated width www, allowing service 

equipment to easily reach each container. 

For the optimization criterion, we will 

focus on maximizing the area coverage of the 

selected site with circles from the set C. 

With all the conditions of the geometric 

design optimization problem formally 

defined, we can proceed to articulate the 

problem statement as follows. 

Problem Statement:  

Find the vector 2

1 2( , ,..., ) n

nu u u u= R  

that optimizes the placement of the maximum 

number of circles items from the set iС , 

Ni I , within the deployment area P while 

ensuring safety clearence. 

 

Mathematical formulation 

One of the most essential and intricate 

challenges in the computer and mathematical 

modeling of this category of problems is the 

analytical representation of the interactions 

between circles and the designated area. In 

this study, we will employ the phi-function 

method, as outlined in previous works such as 

[10,11]. This approach is currently recognized 

as one of the most effective for addressing 

similar issues. 

The formulation of the criteria for 

positioning circles within the area is grounded 

in the creation of the following set 
2

0( \ )G cl P= R . This set can consistently be 
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articulated as a finite union of fundamental 

geometric entities ,ijQ , expressed as follows: 

1 2 3 4

1 1 1 1

j j j j

j j j j

G Q Q Q Q
  

= = = =

= , 

where 1 jQ  is a half-plane, 2 jQ  is a convex 

cone; 3 jQ  is a circle and 4 jQ  is the 

intersection of the half-plane and the 

complement of the circle to 2
R . 

To address the problem, we suggest a 

method that simplifies the solution by 

transforming it into a series of problems with 

linear objective functions. For this purpose, 

the radii of circles are treated as variables. 

The vector of variable radii become 

1 2( , ,..., )v r r r 

= R . 

The phi-function serve as specific 

measures for both the intersection of two 

geometric entities and the shortest distance 

between them, contingent upon their spatial 

arrangement. 

By employing phi-functions for primary 

objects and more complex 2D shapes, the 

mathematical model for the series of 

problems can be articulated as follows:  

            *

1

( ) max
n

n

n i

i

F X r
=

=   
(

5) 

where  

( , ) ,  n n n

nX u v W=  1, 2,..., 1n = + ,  

        





3 : ( ) 0,

( ) 0, , ,

0,  0,  ,

n n n

n i

n

ij j C

i i N

W X X

X i j I

r r r i I

=   

  

−   

R

 
(

6) 

            

2 2

2

( ) ( ) ( )

( ) ,
i j

n

ij i j i j

g

i j l m

X x x y y

r r d

 = − + − −

− + +
 

( )n

i X  is phi-function for iC  and 
2

1 ( \ )G cl P= R , CI  is a set of clusters that 

include iC . And function ( , )i i iu r  

describes the belonging of circle iC  to the 

area P . 

The region of feasible solutions is 

defined by two categories of constraints.  

The first category establishes the 

conditions for positioning objects within a 

designated feasible area while considering the 

specified allowable distances.  

The second category delineates the 

conditions for placing objects at defined 

technological distances.  

Both categories of constraints are 

represented using phi-functions from systems 

(6).  

The objective function seeks to 

maximize the sum of the radii of the 

positioned circles, subject to limitations on 

their maximum sizes. 

 

General solution approach  

To tackle the problem, a multi-phase 

approach is proposed for packing containers 

while taking specified safety constraints into 

account. At each phase, nonlinear 

optimization techniques and contemporary 

NLP-solvers (Non-Linear Programing) are 

utilized. 

This methodology centers on a multi-

phase search for solutions. In order to achieve 

optimal utilization of space within the 

designated area while adhering to given 

constraints, the initial phase involves 

addressing an optimization problem aimed at 

maximizing the number of containers placed 

within a complex area that includes restricted 

zones. To ensure safety against elevated 

thermal and radiation levels, as well as to 

promote a uniform distribution of radiation 

within the area designated for storing spent 

nuclear fuel, minimum allowable distance 

constraints between groups of containers are 

implemented. During this phase, a modified 

feasible direction method utilizing an active 

set strategy is developed for local 

optimization, while a sequential statistical 

optimization method is created for global 

optimization. 

In the second phase, the focus shifts to 

ensuring serviceability for the containers 

within the area by addressing the problem of 

arranging clusters of different geometric 

shapes. These clusters are required to 

maintain designated distances to facilitate the 

movement of service equipment. To tackle 

this issue, a nonlinear optimization approach 

is developed that employs an interior point 

method coupled with a specialized 

decomposition algorithm. 

During the third phase, the overall 

safety parameters of the area are computed. If 
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the calculated values do not meet the 

predefined criteria, the optimization problems 

from the first two phases are revisited 

iteratively until the desired safety conditions 

are achieved. 

To address the problem in the first 

phase, a strategy has been devised that 

follows this sequence of methods: 

The regular placements method and the 

block coordinate descent method are 

employed to establish initial points. 

For searching local extrema, a modified 

feasible direction method integrated with an 

active set strategy on subdomains is utilized. 

To converge towards the global 

extrema, a refined narrowing neighborhoods 

method is implemented. 

The core strategy centers around 

optimizing the objective function defined over 

a set of permutations. For an effective search 

for global extrema, the objective function 

needs to be quasi-separable and exhibit 

multiple extrema, ensuring that the 

distribution of local extrema can be 

recognized, treating each as a realization of a 

random variable. 

To generate initial points within the 

feasible domain, techniques are employed that 

utilize a sequence for positioning three-

dimensional geometric objects. This may 

include methods like the block coordinate 

descent or the regular placements method, 

both aimed at arranging identical three-

dimensional shapes. 

Given the potential link between 

permutations of these geometric objects and 

local extrema in the problem at hand, a 

strategy is implemented to approximate the 

global extremum using a refined narrowing 

neighborhoods approach. This method 

incorporates a randomized search designed to 

optimize the objective function over a set of 

permutations. The narrowing neighborhoods 

technique leverages the probabilistic 

distribution characteristics of local extrema, 

facilitating the organization of sequences of 

three-dimensional objects in such a way that a 

solution nearing the global extremum can be 

achieved in a relatively short time frame. 

To execute this method, a specific 

metric is established within the permutation 

space. The search for optimal objective 

function values occurs within neighborhoods 

defined over the permutation set. At each 

iteration, centers and radii for new 

neighborhoods are chosen based on 

accumulated statistical data. If there is no 

improvement in the objective function value 

during the transition to the next search phase, 

the radius of the neighborhood is reduced. 

This iterative approach leads to a convergent 

sequence. 

It is well recognized that nonlinear 

optimization methods necessitate a feasible 

starting point. Commonly used techniques for 

generating initial points in three-dimensional 

geometric placement problems often involve 

various adaptations of ‘greedy’ algorithms. 

However, due to the NP-hard nature of 

geometric packing problems, relying on 

‘greedy’ algorithms notably restricts the 

exploration of a vast array of local extrema, 

the number of which can exceed n! 

The phi-function method facilitates the 

creation of a mathematical model that allows 

the implementation of advanced nonlinear 

optimization techniques throughout the 

problem-solving process, encompassing 

initial point generation, local extremum 

searches, and the exploration of local extrema. 

In this context, a tailored approach is 

introduced for generating feasible points. The 

core concept involves enhancing the 

problem’s dimensionality by incorporating 

metric variables that are associated with the 

characteristics of geometric objects and their 

homothetic transformations. 

For geometric objects amenable to 

homothetic transformations, we introduce 

variable coefficients that reflect the degree of 

homothety of these objects. To establish a 

feasible starting point, we randomly generate 

coordinates for the geometric objects to be 

placed within a designated container. 

Following this, we tackle a nonlinear 

programming problem aimed at maximizing 

the sum of the homothety coefficients for all 

geometric objects. If the optimization results 

in a point that corresponds to a local 

maximum where all homothety coefficients 

equal one, we accept this as the starting point 

for searching for local extrema in the main 

problem. Unlike ‘greedy’ algorithms, which 

may yield useful yet repetitive points, this 
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innovative method generates diverse initial 

points through random coordinate selection 

for the centers of geometric objects. 

Given the extensive set of inequalities 

that define the feasible region, employing 

nonlinear optimization methods directly to 

locate local extrema would incur substantial 

computational costs. Consequently, a 

specialized decomposition technique has been 

developed to facilitate the search for local 

extrema in the formulated optimization 

problems. This method significantly reduces 

computational expenses by decreasing the 

number of inequalities considered during the 

search for local extrema. By recognizing that 

the feasible solution space can be segmented 

into a union of subdomains, we can 

considerably lessen the time needed to 

identify local minima by solving a series of 

subproblems, each characterized by a more 

limited set of inequalities. 

The fundamental principle of this 

method involves selecting a subregion within 

the feasible area at each stage and iteratively 

generating further subregions from the chosen 

one. Based on an analysis of the starting 

point, an additional set of constraints is 

established for the placement parameters of 

each object, allowing for movement within 

individual containers. Subsequently, 

inequalities are eliminated for all pairs of 

three-dimensional geometric objects whose 

respective containers do not intersect. This 

reduction in constraints also decreases the 

number of additional variables when dealing 

with quasi-phi functions. Following this, a 

search for a local minimum is conducted for 

the newly constructed subproblem. The local 

extremum obtained from this subproblem then 

serves as the starting point for the next 

iteration. 

 

Searching for local optimum solutions 

To identify local maxima in the given 

nonlinear programming problem, we applied 

an optimization method based on the feasible 

direction strategy. This approach focuses on 

moving within the feasible region of the 

solution space while ensuring that each step 

leads toward an increase in the objective 

function, adhering to the problem’s 

constraints. 

Based on the properties of mathematical 

model, a subregion 
1k

W W  containing the 

obtained initial point iX W  is selected to 

find the corresponding local minimum 1*X . 

The local minimum is then computed within 

this subregion. If there are other subregions 

,
jkW W  where 1*

jkX W , 1, 2,..., ,j =  the 

initial point lies, and the computed solution 
1*X  is not a local minimum, the search for a 

local minimum in these subregions is 

repeated. This process continues iteratively 

until a local minimum of the overall problem 

is found. Thus, the task of finding a local 

minimum is reduced to solving a sequence of 

nonlinear programming problems 

 

          *

0( ) min ( ),  1,2,..., .
k j

j

X W
F X F X j m 


= =  

To address the problem, a modified 

version of Zoutendijk's feasible direction 

method is applied, along with the ε-active 

inequality strategy. For each subproblem, a 

standard iterative procedure 
( 1)k k kX X tZ+ = + , 1,2,...,k = , is used to 

determine the local minimum. In each 

iteration, the process involves solving a linear 

programming problem, where the solution is 

derived from the following linear 

programming formulation: 

                                       
( , )

max ,
k k k

k

Z G




 

3 1{( , ) :

( ( ), ) ,

( ( ), ) ,

  1, 2,..., ( ),  

1,  1, 2,...,3 1}

j

k k k n

k k k

k k k

k

k k

k

i

G Z

F X Z

X Z

j

z i n







 

+= 

− 

− 

=

 = +

R

 

(25) 

where ( )
j

k

k X  is left parts of ε-active 

inequalities from the system separated from 

the system at a point 
kX . 

The transition from one problem to the 

next is performed as follows. 

 Let 
1iX X W=   be a starting point. 

Then from the system specifying the 

subregion 
1k

W  , a system 
1k

W W , such that 

1

1

iX W  is chosen. Using the point 1X  as a 

starting point, the problem  
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1

1*( ) min ( )
kX W

F X F X


=   

is solved. 

A solution 1*X  can be either a local 

minimum over the entire region W  or 

geometric objects relative to the subregion 

1i
W . 

In order to determine whether 1*X  a 

local minimum relative to W , it is necessary 

to investigate subregions 
jkW   with 1*

jkX W
 

, 0{1, 2,..., }j  . For this purpose, all are 

chosen from the system ε-active inequalities 

in 1*X   and problem is solved.  

After that, a new system of inequalities 

is formed that defines the subdomain 

2kW W
 
,  such that  

2

2

kX W . Using 2X   

as a starting point, the problem  

 

       
2

2*( ) min ( )
kX W

F X F X


=  (27) 

is solved. 

The described process continues until a 

local minimum of the underlying problem is 

reached. At this point, no further feasible 

steps can improve the objective function, 

signaling the optimization's convergence to a 

local solution. 

 

Computational results  

To evaluate the performance of our 

constructed mathematical model and the 

proposed approach for solving the problem, 

we tackled the challenge of packing 80 

cylindrical containers of hazardous waste 

within an area of complex geometry (depicted 

in Figure 1,a). The geometric contours of this 

area are defined by a sequence of line 

segments and circular arcs. Within the 

designated placement area, there is a zone 

where container placement is prohibited. 

Additionally, the problem statement specifies 

technological constraints on container 

placement. The results of solving this problem 

are illustrated in Figure 1,b. 

Solving the problem shown in the figure 

took 45 minutes and 40 seconds. We used a 

computer with an Intel(R) Core i5-10400F 

2.90GHz processor and 16 GB of RAM, with 

our software developed in C#. 

Recent advances in optimization 

methods, especially in nonlinear optimization, 

have revolutionized the way we solve these 

problems. These improvements have greatly 

boosted the reliability, speed, and accuracy in 

finding both local and global solutions. They 

can be applied across various domains, 

utilizing user-developed external procedures 

for calculating objective functions, residual 

constraints, and Jacobian and Hessian 

matrices. 

 

 
(a) 

 
(b) 

  

Fig. 1. A numerical example 

 

In this study, we utilized the IPOPT 

library to enhance the efficiency of locating 

local extrema within subregions. IPOPT is 

particularly well-suited for large-scale 

packing optimization problems due to its 

ability to manage high-dimensional 

challenges effectively. Such problems often 
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involve numerous variables and constraints, 

which become increasingly difficult for 

traditional optimization methods to solve 

within reasonable time limits as the problem 

size grows. IPOPT’s advanced interior-point 

algorithms allow it to navigate these complex 

solution spaces with speed and precision. 

By exploiting the structural properties 

of optimization problems, IPOPT efficiently 

searches for optimal solutions while ensuring 

all constraints are satisfied. It leverages sparse 

linear algebra and problem-specific features, 

enabling it to scale to problems with millions 

of variables. This makes IPOPT a vital tool 

for handling large-scale packing optimization 

tasks. Additionally, IPOPT offers extensive 

customization options and interfaces, 

allowing users to tailor the optimization 

process to meet specific needs and integrate it 

seamlessly into existing workflows. 

 

Conclusion 

This study formulates the problem of 

optimally arranging containers for hazardous 

materials, considering specified sanitary 

constraints, as a geometric design 

optimization issue. All aspects of this 

geometric design problem are elaborately 

detailed. A mathematical model is developed 

for packing congruent circles into a multiply 

connected region, where the boundary 

consists of circular arcs and line segments. 

This model is framed as a nonlinear 

optimization problem. 

Utilizing the method of phi-functions, 

we construct a mathematical model where the 

feasible solution space can be represented as a 

union of subregions. Each subregion is 

defined by systems of inequalities with 

continuous functions on the left-hand sides. 

This representation facilitates the effective 

application of modern nonlinear optimization 

techniques to address the problem. 

The findings of this research carry 

significant practical implications, especially 

regarding the optimization of safety-critical 

systems. The intelligent system developed for 

the optimal placement of containers is directly 

applicable to the secure storage of hazardous 

materials. By employing advanced 

mathematical modeling techniques, this 

approach navigates complex real-world 

constraints, including spatial limitations, 

safety regulations, and technological 

requirements. 

The effectiveness of the proposed 

model is illustrated through its application to 

a practical scenario: optimally packing 80 

cylindrical containers within a complex, 

multiconnected storage area featuring 

prohibited zones. This scenario reflects real-

world challenges, highlighting the system's 

ability to enhance safety and efficiency in 

storage operations across various industries. 

The practical benefits extend beyond 

theoretical insights, providing tangible 

improvements in operational settings. The 

system’s capability to handle nonlinear 

programming challenges with high precision 

ensures effective integration into existing 

safety protocols. This integration can lead to 

optimized storage density, reduced risk of 

accidents, and improved utilization of 

available space — all critical factors in 

environments where safety is a priority. 

Furthermore, the flexibility of this 

approach allows for adaptation across a wide 

array of applications, ranging from industrial 

storage facilities to the transportation of 

hazardous materials. As safety regulations 

become increasingly stringent, the demand for 

such intelligent systems will rise, rendering 

the results of this study not only relevant but 

essential for future advancements in safety 

optimization. 

In summary, the practical significance 

of the results obtained lies in providing a 

robust, efficient, and scalable solution to the 

pressing issue of safe storage of hazardous 

materials, with potential applications across 

multiple domains where safety and 

optimization are vital. 

 

References 

 
1. Shah, I.A., Mishra, S.D. (2024) Artificial 

intelligence in advancing occupational health and 

safety: an encapsulation of developments, Journal of 

Occupational Health, 66(1), 1–12.  

doi: 10.1093/joccuh/uiad017. 

2. Andeobu, L. (2023) Medical Waste and Its 

Management. In: Brinkmann, R. (eds) The Palgrave 

Handbook of Global Sustainability. Palgrave 

Macmillan, Cham, pp. 761-789.  

doi: 10.1007/978-3-031-01949-4_53. 

https://doi.org/10.1093/joccuh/uiad017


ISSN  2710 – 1673   Artificial  Intelligence   2024   № 4 

 

193 

 

3. Bernabeu-Martínez, M.A., Ramos Merino, M, 

Santos Gago, J.M., Álvarez Sabucedo, L,M,, Wanden-

Berghe, C., et al. (2018) Guidelines for safe handling 

of hazardous drugs: A systematic review. PLOS ONE, 

13(5), e0197172. doi: 10.1371/journal.pone.0197172. 

4. Attrah, M., Elmanadely, A., Akter, D., Rene, 

E.R. (2022) A Review on Medical Waste Management: 

Treatment, Recycling, and Disposal 

Options. Environments, 9, 146.  

doi: 10.3390/environments9110146 . 
5. Romanova, T.E., Stetsyuk, P.I., Chugay, 

A.M. et al. (2019) Parallel Computing Technologies 

for Solving Optimization Problems of Geometric 

Design. Cybern Syst Anal. 55, 894–904.  

doi: 10.1007/s10559-019-00199-4. 

6. Kallrath, J. (2021) Cutting and Packing Beyond 

and Within Mathematical Programming. In: Business 

Optimization Using Mathematical Programming. 

International Series in Operations Research & 

Management Science, vol 307. Springer, Cham.  

doi: 10.1007/978-3-030-73237-0_15. 

7. Chuhai, A., Starkova, O., Yaskova, Y. (2023) 

Intelligent System for Radio-Surgical Treatment 

Planning Using Spheres Placement Optimization with 

Overlaps. Stuc. intelekt., 28(3), 104–108.  

doi: 10.15407/jai2023.03.104. 
8. Chuhai, A.M., Yaskova, Y.G., Dubinskyi, V.M. 

(2022) An Intelligent Decision Support System for 

Solving Optimized Geometric Design Problems. Stuc. 

intelekt., 27(2), 29–37.  doi: 10.15407/jai2022.02.029. 

9. Litvinchev, I., Infante, L., Ozuna, L. (2015) 

Packing circular-like objects in a rectangular 

container.  J. Comput. Syst. Sci. Int., 54, 259–267.  

doi: 10.1134/S1064230715020070. 
10. He, K., Ye, H., Wang, Z. Liu, J. (2017) An 

Efficient Quasi-physical Quasi-human Algorithm for 

Packing Equal Circles in a Circular Container. 

arXiv:1611.02323. doi:10.48550/arXiv.1611.02323.  

11. Peralta, J., Andretta, M., Oliveira, J. F. (2017) 

Solving Irregular Strip Packing Problems With Free 

Rotations Using Separation Lines. arXiv: 1707.07177. 

doi: 10.48550/arXiv.1707.07177. 

12. Stoyan, Y., Pankratov, A., Romanova, T. (2016) 

Cutting and packing problems for irregular objects with 

continuous rotations: mathematical modelling and non-

linear optimization. The Journal of the Operational 

Research Society, 67(5), 786–800. 

http://www.jstor.org/stable/44988093. 

13. Waechter, A., Biegler, L.T. (2006) On the 

implementation of an interior-point filter line-search 

algorithm for large-scale nonlinear programming. 

Math. Program., 106, 25–57.  

doi: 10.1007/s10107-004-0559-y. 
 

The article has been sent to the editors 25.10.24. 

After processing 15.11.24. 

Submitted for printing 30.12.24. 

 

Copyright under license CCBY-SA4.0. 

 

https://doi.org/10.1371/journal.pone.0197172
https://doi.org/10.3390/environments9110146
https://doi.org/10.1007/s10559-019-00199-4
https://doi.org/10.1007/978-3-030-73237-0_15
https://doi.org/10.15407/jai2023.03.104
https://doi.org/10.15407/jai2022.02.029
https://doi.org/10.1134/S1064230715020070
ura/stat/ШИ/Kun%20He,%20Hui%20Ye,%20Zhengli%20Wang,%20Jingfa%20Liu.%20An%20Efficient%20Quasi-physical%20Quasi-human%20Algorithm%20for%20Packing%20Equal%20Circles%20in%20a%20Circular%20Container.%202017.%20arXiv:1611.02323.%20https:/doi.org/10.48550/arXiv.1611.02323
ura/stat/ШИ/Kun%20He,%20Hui%20Ye,%20Zhengli%20Wang,%20Jingfa%20Liu.%20An%20Efficient%20Quasi-physical%20Quasi-human%20Algorithm%20for%20Packing%20Equal%20Circles%20in%20a%20Circular%20Container.%202017.%20arXiv:1611.02323.%20https:/doi.org/10.48550/arXiv.1611.02323
ura/stat/ШИ/Kun%20He,%20Hui%20Ye,%20Zhengli%20Wang,%20Jingfa%20Liu.%20An%20Efficient%20Quasi-physical%20Quasi-human%20Algorithm%20for%20Packing%20Equal%20Circles%20in%20a%20Circular%20Container.%202017.%20arXiv:1611.02323.%20https:/doi.org/10.48550/arXiv.1611.02323
ura/stat/ШИ/Kun%20He,%20Hui%20Ye,%20Zhengli%20Wang,%20Jingfa%20Liu.%20An%20Efficient%20Quasi-physical%20Quasi-human%20Algorithm%20for%20Packing%20Equal%20Circles%20in%20a%20Circular%20Container.%202017.%20arXiv:1611.02323.%20https:/doi.org/10.48550/arXiv.1611.02323
http://www.jstor.org/stable/44988093

