Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://repository.hneu.edu.ua/handle/123456789/24547
Назва: The Application of Weighted Decision Matrix for the Selection of Non-state Pension Provision Strategy
Автори: Pukała R.
Vnukova N. M.
Achkasova S. A.
Gorokhovatskyi O. V.
Теми: Choice Criteria
Weighted Decision Matrix
Entity Association
Non-state Pension Provision
Decision Making
Дата публікації: 2020
Бібліографічний опис: Pukała R. The Application of Weighted Decision Matrix for the Selection of Non-state Pension Provision Strategy / R. Pukała, N. Vnukova, S. Achkasova, O. Gorokhovatskyi. // In CEUR Workshop Proceedings: Modern Machine Learning Technologies and Data Science Workshop 2020 (MoMLeT+DS 2020). 2631. - pp. 268-279. Available online: http://ceur-ws.org/Vol-2631/
Короткий огляд (реферат): In this paper, it was proposed to justify the selection of a non-state pension provision strategy, which takes into account the possibility of using the limited financial resources of potential participants of the non-state pension system. The criteria to choose the appropriate non-state pension provision entity as well as the criteria to choose the priority association of non-state pension entities were justified. The solution of these problems with the automatic decision making tool known as a weighted decision matrix that is simple to implement and understand was proposed. Additionally, it was proposed a method, which extends the functionality of decision making with the estimation of the stability of the decision made. It was denoted the decision to be confident if there is no opportunity to change one or two criteria weights and alternative coefficients and get a totally different decision. The modeling has shown that the usage of a weighted decision matrix allows making the decisions for complex tasks with a lot of criteria and weights in a fraction of a second.
URI (Уніфікований ідентифікатор ресурсу): http://repository.hneu.edu.ua/handle/123456789/24547
Розташовується у зібраннях:Статті (МТМСФТ)

Файли цього матеріалу:
Файл Опис РозмірФормат 
paper20.pdf997,21 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.