Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://repository.hneu.edu.ua/handle/123456789/25585
Назва: Modelling of the derivatives pricing with multifactor volatility
Автори: Burtnyak I.
Malytska A.
Gvozdytskyi V. S.
Теми: derivative pricing
diffusion processes
Ornstein-Uhlenbeck process
spectral theory
singular and regular perturbation theory
stochastic volatility
Sturm-Liouville theory
Vasicek model
Дата публікації: 2020
Бібліографічний опис: Burtnyak I. Modelling of the derivatives pricing with multifactor volatility / I. Burtnyak, A. Malytska, V. Gvozdytskyi // Machine Learning Methods and Models, Predictive Analytics and Applications, Proceedings of the Workshop on the XII International Scientific Practical Conference Modern problems of social and economic systems modelling (MPSESM-W 2020), June 25, 2020. ‒ Kharkiv, Ukraine, 2020. ‒ Р. 92-108.
Короткий огляд (реферат): The pricing of options generated by diffusion processes, where diffusion depends on two groups of variables, was carried out. An algorithm for calculating the approximate price of derivatives and the accuracy of valuations has been developed, which allows to perform the analysis and to make precautionary to minimize the risk of derivatives pricing arising on the stock market. The method of finding the indicative price for a wide class of derivatives has been expanded. Using the spectral theory of self-adjoint operators in Hilbert space and the wave theory of singular and regular perturbations, an analytical formula of the approximate asset price was set, which was described by models with stochastic volatility dependent on l-fast variable and n-slow variable factors, l≥1,n≥1, l∈N,n∈N and on local variable.
URI (Уніфікований ідентифікатор ресурсу): http://repository.hneu.edu.ua/handle/123456789/25585
Розташовується у зібраннях:Статті (ЕКСА)

Файли цього матеріалу:
Файл Опис РозмірФормат 
Modelling of the derivatives pricing with multifactor volatility.pdf726,58 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.