Please use this identifier to cite or link to this item: http://repository.hneu.edu.ua/handle/123456789/32541
Title: Нейромережеве прогнозування часових рядів на основі багатошарового персептрона
Authors: Руденко О. Г.
Безсонов О. О.
Романюк О. С.
Keywords: часовий ряд
штучна нейронна мережа
алгоритм навчання
активаційна функція
імітаційне моделювання
Issue Date: 2019
Publisher: ХНЕУ ім. С. Кузнеця
Citation: Руденко О. Г. Нейромережеве прогнозування часових рядів на основі багатошарового персептрона / О. Г. Руденко, О. О. Безсонов, О. С. Романюк // Управління розвитком. – Т. 17. – № 1. – С. 23-34.
Abstract: До останнього часу основним при вирішенні задачі прогнозування був статистичний підхід. В рамках статистичних моделей вирішуються задачі прогнозування, знаходження прихованих періодичностей в даних, аналізу залежностей, оцінки ризиків при прийнятті рішень та інші. Загальним недоліком статистичних моделей є складність вибору типу моделі і підбору її параметрів. Альтернативою статистичним методам можуть служити методи обчислювального інтелекту, до числа яких, в першу чергу, слід віднести штучні нейронні мережі. Здатність нейронної мережі до різнобічної обробки інформації випливає з її здатності до узагальнення і виділення прихованих залежностей між вхідними та вихідними даними. Істотною перевагою нейронних мереж є те, що вони здатні до навчання і узагальнення накопичених знань. У статті запропоновано метод навчання нейронних мереж при вирішенні задачі прогнозування часового ряду (ЧР). Більшість практичних задач прогнозованя ЧР характеризуються високим рівнем нелінійності і нестаціонарності, зашумленістю, наявністю нерегулярних трендів, стрибків, аномальних викидів. У цих умовах жорсткі статистичні припущення про властивості ЧР часто обмежують можливості класичних методів прогнозування. Альтернативою статистичним методам можуть служити методи обчислювального інтелекту, до числа яких відносяться штучні нейронні мережі. Результати імітаційного моделювання підтвердили, що запропонований метод навчання нейронної мережі дозволяє значно підвищити точність прогнозування часових рядів.
URI: http://repository.hneu.edu.ua/handle/123456789/32541
Appears in Collections:№ 1

Files in This Item:
File Description SizeFormat 
руденко.pdf503,35 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.