Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://repository.hneu.edu.ua/handle/123456789/34719
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorGorokhovatskyi O.-
dc.contributor.authorVnukova N.-
dc.contributor.authorOstapenko V.-
dc.contributor.authorTyschenko V.-
dc.date.accessioned2024-12-16T15:10:57Z-
dc.date.available2024-12-16T15:10:57Z-
dc.date.issued2024-
dc.identifier.citationGorokhovatskyi O. Semantic-based Clustering for Education-Science-Business Interaction Bibliometric Analysis / O. Gorokhovatskyi, N. Vnukova, V. Ostapenko and other // In CEUR Workshop Proceedings: International Conference on Computational Linguistics and Intelligent Systems 2024 (COLINS 2024). - Р. 124-140.uk_UA
dc.identifier.urihttp://repository.hneu.edu.ua/handle/123456789/34719-
dc.description.abstractThis paper presents the analysis of scientific publications on the interaction of education, science and business in the innovation economy on the basis of bibliometric software, sources from the Scopus scientometric database, supplemented by data visualization and descriptive analysis. The usage of clustering based on the word semantical similarity as well as clustering quality evaluation has been proposed to extend the data analysis opportunities in the scope of research topic evaluation. Different pretrained word embedding models were tested: GloVe, Word2Vec and transformers models. This allows us to evaluate the effective clustering quantity and extend the topic analysis using both the representation of our methods and known software (VOSViewer, Biblioshiny). It is shown also that performing the dimensionality reduction for this research is more effective before K-Means clustering than after it.uk_UA
dc.language.isoenuk_UA
dc.subjectbibliometric software toolsuk_UA
dc.subjectScopusuk_UA
dc.subjectVOSvieweruk_UA
dc.subjectBiblioshinyuk_UA
dc.subjectinnovative economyuk_UA
dc.subjecteducation-science-business interactionuk_UA
dc.subjectK-Meansuk_UA
dc.subjectword embeddingsuk_UA
dc.subjectpretrained modelsuk_UA
dc.subjectclusteringuk_UA
dc.subjectclustering qualityuk_UA
dc.titleSemantic-based Clustering for Education-Science-Business Interaction Bibliometric Analysisuk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Статті (ІКТ)

Файли цього матеріалу:
Файл Опис РозмірФормат 
10.pdf65,46 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.