Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://repository.hneu.edu.ua/handle/123456789/34974
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorKorablyov M.-
dc.contributor.authorKobzev I.-
dc.contributor.authorChubukin O.-
dc.contributor.authorAntonov D.-
dc.contributor.authorPolous V.-
dc.contributor.authorTkachuk O.-
dc.date.accessioned2024-12-24T11:51:32Z-
dc.date.available2024-12-24T11:51:32Z-
dc.date.issued2024-
dc.identifier.citationKorablyov M. Comparative analysis of models for short-term forecasting of electricity consumption / M. Korablyov, I.Kobzev, O. Chubukin and other // Proceedings of the 12th International Scientific and Practical Conference "Information Control Systems & Technologies" (ICST2024). – 2024.uk_UA
dc.identifier.urihttp://repository.hneu.edu.ua/handle/123456789/34974-
dc.description.abstractForecasting electricity consumption is an urgent task, and the solution significantly affects the efficiency of the use of energy resources. The paper considers short-term forecasting of electricity consumption, which predicts the amount of energy that will be used in a short period, from several hours to several days in advance. There are various short-term forecasting models, so it is important to reasonably choose a model that provides analysis and effective forecasting of electricity consumption to optimize the use of energy resources. The purpose of the work is to analyze the main forecasting models, such as statistical models (autoregressive model, moving average, exponential smoothing, moving average with autoregression and integration) and deep learning models (artificial neural network, recurrent neural network, long short-term memory, transformer), indicating their advantages and disadvantages, and choosing the best of them. The experimental results of a comparative analysis of power consumption forecasting models are presented, which showed that the transformer model was 1.5% - 2% more effective in power consumption forecasting according to various metrics. Its higher level of accuracy, reflected in low error values and high coefficient of determination, indicates its high adaptability to the dynamics of electricity consumption.uk_UA
dc.language.isoenuk_UA
dc.subjectForecastinguk_UA
dc.subjecttime seriesuk_UA
dc.subjectpower consumptionuk_UA
dc.subjectmodeluk_UA
dc.subjectneural networkuk_UA
dc.subjectdeep learninguk_UA
dc.subjectaccuracyuk_UA
dc.titleComparative analysis of models for short-term forecasting of electricity consumptionuk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Статті (МСТ)

Файли цього матеріалу:
Файл Опис РозмірФормат 
COMPARATIVE ANALYSIS OF MODELS FOR SHORT-TERM FORECASTING OF ELECTRICITY CONSUMPTION_..........pdf55,51 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.