Please use this identifier to cite or link to this item: http://repository.hneu.edu.ua/handle/123456789/23308
Title: Ансамбль дрібних згорткових нейронних мереж для класифікації статі людини у відеопотоці
Authors: Гороховатський О. В.
Передрій О. О.
Keywords: ансамбль
неглибокі нейронні мережі
детектування облич
класифікація статі
розпізнавання зображень
згорткові нейронні мережі
голосування із довірою
агрегація, фрейм
відеопотік
Issue Date: 2019
Citation: Гороховатський О. В. Ансамбль дрібних згорткових нейронних мереж для класифікації статі людини у відеопотоці / О. В. Гороховатський, О. О. Передрій // Сучасні інформаційні системи. – 2019. – № 3(4). – С. 74-79.
Abstract: Предметом досліджень є нейромережеві моделі класифікації статі особи на зображенні обличчя при обробці відеопотоку. Метою є дослідження ефективності окремих дрібних згорткових мереж та ансамблів, що створені з них, для вирішення задачі класифікації статі людини у відеопотоці, що обробляється як послідовність окремих фреймів. Завданнями є розробка математичних моделей обробки послідовностей фреймів із накопичуванням за різними стратегіями, дослідження їх ефективності при вирішення задачі класифікації, компіляція ансамблів дрібних згорткових нейронних мереж. Застосовуваними методами є: моделі нейронних мереж, інтелектуальний аналіз даних, математична статистика, функціональний аналіз, комп'ютерне моделювання. Отримані результати: показано, що точність класифікації може бути підвищена як за рахунок використання різних моделей голосування результатів окремих фреймів, так і за рахунок використання ансамблів неглибоких загорткових нейронних мереж. Незначні апаратні та програмні ресурси, необхідні для їх навчання та використання, дають можливість підвищити швидкість класифікації в декілька разів порівняно із результатами класифікації нейронними мережами, що мають складнішу архітектуру. Висновки. Наукова новизна полягає у створенні ансамблів неглибоких нейронних мереж, загальне рішення в яких приймається після узагальнення різними методами голосування з довірою як результатів класифікації окремих фреймів, так і результатів класифікації одного і того ж фрейму різними мережами, що дає можливість підвищити надійність та швидкість класифікації. Практична значущість роботи полягає у створенні метода, що дає можливість зберегти прийнятний рівень точності класифікації та значно пришвидшити процес класифікації за рахунок використання неглибоких архітектур нейронних мереж.
URI: http://repository.hneu.edu.ua/handle/123456789/23308
Appears in Collections:Статті (ІКТ)

Files in This Item:
File Description SizeFormat 
Гороховатський О. В., Передрій О. О..pdf355,56 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.