Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://repository.hneu.edu.ua/handle/123456789/29236
Назва: Image Pair Comparison for Near-duplicates Detection
Автори: Gorokhovatskyi O.
Peredrii O.
Теми: image
near-duplicates
non-near-duplicate
descriptors
similarity
accuracy
threshold
binary classification
Дата публікації: 2023
Бібліографічний опис: Gorokhovatskyi O. Image Pair Comparison for Near-duplicates Detection / O. Gorokhovatskyi, O. Peredrii // International Journal of Computing. – 2023. – 22(1). – Р. 51-57.
Короткий огляд (реферат): The paper describes the search for a solution to the image near-duplicate detection problem. We assume that there are only two images to compare and classify whether they are near-duplicates. There are some traditional methods to match pair of images, and the evaluation of the most famous of them in terms of the problem is performed in this research. The effective thresholds to separate near-duplicate classes are found during experimental modeling using the INRIA Holidays dataset. The sequence of methods is proposed to make the joint decision better in terms of accuracy. It is shown also that the accuracy of binary classification of the proposed approach for the combination of the histogram comparison and ORB descriptors matching is about 85% for both near-duplicate and not near-duplicate pairs of images. This is compared to the existing methods, and it is shown, that the accuracy of more powerful methods, based on deep learning, is better, but the speed of the proposed method is higher.
URI (Уніфікований ідентифікатор ресурсу): http://repository.hneu.edu.ua/handle/123456789/29236
Розташовується у зібраннях:Статті (ІКТ)

Файли цього матеріалу:
Файл Опис РозмірФормат 
IJC_2023_22_1_07.pdf923,78 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.