Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://repository.hneu.edu.ua/handle/123456789/30785
Название: Non-Linear Model of the Dynamics of the Macroeconomic System: Multiplier-Accelerator.
Авторы: Dorokhov O.
Lebedeva I.
Malyarets L.
Voronin V.
Ключевые слова: nonlinear dynamics
open system
bifurcation
limit cycle
Дата публикации: 2023
Библиографическое описание: Dorokhov O. Non-Linear Model of the Dynamics of the Macroeconomic System: Multiplier-Accelerator / O. Dorokhov, I. Lebedeva, L. Malyarets and other // Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science. – 2023. - Vol. 3(65). - No. 2. - Р.181-200.
Краткий осмотр (реферат): The paper proposes a new approach to the development of a mathematical model of the dynamics of the mutual multiplier, which indicates the marginal propensity to save as a result of GDP growth, and the accelerator, which reflects the growth of national income capital. The model is based on the hypothesis of a non-linear dependence of consumption on the amount of profit. At the same time, it is assumed that the growth of consumption will be limited, that is, the effect of saturation. In addition, the model takes into account the delayed reaction of the accelerator to the influence of the multiplier. When building the model, processes are considered in continuous time. The application of this model to the analysis of the dynamic properties of the macroeconomic system makes it possible to estimate the parameters under which the "multiplier-accelerator" system enters a critical state. The presence of a double limit cycle with corresponding "soft" and "hard" modes of birth (death) of the limit cycle was also substantiated.
URI (Унифицированный идентификатор ресурса): http://repository.hneu.edu.ua/handle/123456789/30785
Располагается в коллекциях:Статті (ЕММ)

Файлы этого ресурса:
Файл Описание РазмерФормат 
Dorokhov.pdf150,37 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.