Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://repository.hneu.edu.ua/handle/123456789/32541
Название: Нейромережеве прогнозування часових рядів на основі багатошарового персептрона
Авторы: Руденко О. Г.
Безсонов О. О.
Романюк О. С.
Ключевые слова: часовий ряд
штучна нейронна мережа
алгоритм навчання
активаційна функція
імітаційне моделювання
Дата публикации: 2019
Издательство: ХНЕУ ім. С. Кузнеця
Библиографическое описание: Руденко О. Г. Нейромережеве прогнозування часових рядів на основі багатошарового персептрона / О. Г. Руденко, О. О. Безсонов, О. С. Романюк // Управління розвитком. – Т. 17. – № 1. – С. 23-34.
Краткий осмотр (реферат): До останнього часу основним при вирішенні задачі прогнозування був статистичний підхід. В рамках статистичних моделей вирішуються задачі прогнозування, знаходження прихованих періодичностей в даних, аналізу залежностей, оцінки ризиків при прийнятті рішень та інші. Загальним недоліком статистичних моделей є складність вибору типу моделі і підбору її параметрів. Альтернативою статистичним методам можуть служити методи обчислювального інтелекту, до числа яких, в першу чергу, слід віднести штучні нейронні мережі. Здатність нейронної мережі до різнобічної обробки інформації випливає з її здатності до узагальнення і виділення прихованих залежностей між вхідними та вихідними даними. Істотною перевагою нейронних мереж є те, що вони здатні до навчання і узагальнення накопичених знань. У статті запропоновано метод навчання нейронних мереж при вирішенні задачі прогнозування часового ряду (ЧР). Більшість практичних задач прогнозованя ЧР характеризуються високим рівнем нелінійності і нестаціонарності, зашумленістю, наявністю нерегулярних трендів, стрибків, аномальних викидів. У цих умовах жорсткі статистичні припущення про властивості ЧР часто обмежують можливості класичних методів прогнозування. Альтернативою статистичним методам можуть служити методи обчислювального інтелекту, до числа яких відносяться штучні нейронні мережі. Результати імітаційного моделювання підтвердили, що запропонований метод навчання нейронної мережі дозволяє значно підвищити точність прогнозування часових рядів.
URI (Унифицированный идентификатор ресурса): http://repository.hneu.edu.ua/handle/123456789/32541
Располагается в коллекциях:№ 1

Файлы этого ресурса:
Файл Описание РазмерФормат 
руденко.pdf503,35 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.