Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://repository.hneu.edu.ua/handle/123456789/34600
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorZadachyn V. M.-
dc.contributor.authorBebiya M. O.-
dc.date.accessioned2024-12-05T14:57:04Z-
dc.date.available2024-12-05T14:57:04Z-
dc.date.issued2024-
dc.identifier.citationZadachyn V. M. Combined methods for solving degenerate unconstrained optimization problems / V.M. Zadachyn, M.O. Bebiya // Український математичний журнал. - 2024. - Т. 76. - № 5. - С. 695-718.uk_UA
dc.identifier.urihttp://repository.hneu.edu.ua/handle/123456789/34600-
dc.description.abstractWe present constructive second- and fourth-order methods for solving degenerate unconstrained optimization problems. The fourth-order method applied in the present work is a combination of the Newton method and the method that uses fourth-order derivatives. Our approach is based on the decomposition of R^n into the direct sum of the kernel of a Hessian matrix and its orthogonal complement. The fourth-order method is applied to the kernel of the Hessian matrix, whereas the Newton method is applied to its orthogonal complement. This method proves to be efficient in the case of a one-dimensional kernel of the Hessian matrix. In order to get the second-order method, Newton's method is combined with the steepest-descent method. We study the efficiency of these methods and analyze their convergence rates. We also propose a new adaptive combined quasi-Newton-type method (ACQNM) based on the use of the second- and fourth-order methods in the degenerate case. The efficiency of ACQNM is demonstrated by analyzing an example of some most common test functions.uk_UA
dc.language.isoenuk_UA
dc.subjectunconditional optimizationuk_UA
dc.subjectdegenerate minimum pointuk_UA
dc.subjectoptimality conditionsuk_UA
dc.subjectNewton’s modified methoduk_UA
dc.titleCombined methods for solving degenerate unconstrained optimization problemsuk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Статті (ІС)

Файли цього матеріалу:
Файл Опис РозмірФормат 
Zadachyn.pdf316,37 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.